<span>h = (19 - sqrt(97))/6, which is approximately 1.525190366
The volume of the box will be
V = lwh
And l will be
a - 2h
And w will be
b - 2h
So using the above, the volume of the box will be
V = lwh
V = (a - 2h)(b - 2h)h
V = (11 - 2h)(8 - 2h)h
V = (88 - 22h -16h + 4h^2)h
V = (88 - 38h + 4h^2)h
V = 88h - 38h^2 + 4h^3
Since you're looking for a maximum, that screams "First derivative" So let's calculate the first derivative of the function and solve for 0.
V = 88h^1 - 38h^2 + 4h^3
V' = 1*88h^(1-1) - 2*38h^(2-1) + 3*4h^(3-1)
V' = 1*88h^0 - 2*38h^1 + 3*4h^2
V' = 88 - 76h + 12h^2
We now have a quadratic equation. So using the quadratic formula with A=12, B=-76, and C=88, calculate the roots as:
(19 +/- sqrt(97))/6
which is approximately 1.525190366 and 4.808142967
We can ignore the 4.808142967 value since although it does indicate a slope of 0, it produces a negative width and is actually a local minimum of the volume function.
So the optimal value of h is (19 - sqrt(97))/6, which is approximately 1.525190366</span>
Answer:
Tdjdjfhbs djdjdjdjd djdjdjjdjd
Step-by-step explanation:
Brainiest ududhdhxhc
If we put the numbers in order, it would be 12, 12.50, 13, 18.50, 20, 20 we can see the middle numbers would be 13 and 18.50. if only one number is wanted as the median, then we can do (13+18.50) divided by 2 and get 15.75.
Josiah then Taylor and last is Layla