1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
6

What is the distance between the points (2, 1) and (14, 6) on a coordinate

Mathematics
2 answers:
Naddika [18.5K]3 years ago
8 0
The distance between the points (2,1) and (14,6) on a coordinate is C. 13 units
DochEvi [55]3 years ago
6 0

Answer:12/5

Step-by-step explanation:

You might be interested in
Which equation below represents a line with a slope of - 2/3 that passes through the point (-4.5 , 10)?
Lostsunrise [7]

Answer:

Option C

Step-by-step explanation:

If a line passes through a point, then that point is called a solution to the line's equation. Substituting the x and y values of that solution into the equation will give a true statement. So, to find out which option is correct, we can substitute the x and y values of (-4.5, 10) into each equation and see if the result is a true statement.  

Let's try this with option C. To make things easier, convert -4.5 into decimal form: -4\frac{1}{2}. Substitute -4\frac{1}{2} for x and 10 for y in the equation, then solve:  

y = -\frac{2}{3} x+7\\\\10 = -\frac{2}{3} (-4\frac{1}{2} )+7\\10 = -\frac{2}{3} (-\frac{9}{2})+7\\10 = 3+7\\10 = 10

10 does equal 10, so this is a true statement. Option C is the right answer.

8 0
3 years ago
Given f(x) = 4(x - 8), determine the value of f(10).
Ilya [14]

Answer:

f(10) = 8

Step-by-step explanation:

f(x) = 4(x - 8)

Let x = 10

f(10) = 4 ( 10-8)

       = 4 ( 2)

      = 8

8 0
3 years ago
Read 2 more answers
Please help and explain how you solved it. Thanks.
galina1969 [7]

Answer:

This is 0.14 to the nearest hundredth

Step-by-step explanation:

Firstly we list the parameters;

Drive to school = 40

Take the bus = 50

Walk = 10

Sophomore = 30

Junior = 35

Senior = 35

Total number of students in sample is 100

Let W be the event that a student walked to school

So P(w) = 10/100 = 0.1

Let S be the event that a student is a senior

P(S) = 35/100 = 0.35

The probability we want to calculate can be said to be;

Probability that a student walked to school given that he is a senior

This can be represented and calculated as follows;

P( w| s) = P( w n s) / P(s)

w n s is the probability that a student walked to school and he is a senior

We need to know the number of seniors who walked to school

From the table, this is 5/100 = 0.05

So the Conditional probability is as follows;

P(W | S ) = 0.05/0.35 = 0.1429

To the nearest hundredth, that is 0.14

3 0
3 years ago
What is the volume of the right rectangular prism below?
Vesnalui [34]

Answer:

Volume of right rectangular prism = 3.75 in³

Step-by-step explanation:

Given:

First side of rectangular prism = 2 inches

Second side of rectangular prism = 1\frac{1}{2} = 1.5 inches

Third side of rectangular prism = 1\frac{1}{4} = 1.25 inches

Find:

Volume of right rectangular prism:

Computation:

Volume\ of\ right\ rectangular\ prism=lbh\\\\Volume\ of\ right\ rectangular\ prism=(2)(1.5)(1.25)\\\\ Volume\ of\ right\ rectangular\ prism= 3.75 in^3

7 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Cint%5Climits%5Ea_b%20%7B%281-x%5E%7B2%7D%20%29%5E%7B3%2F2%7D%20%7D%20%5C%2C%20dx" id="TexFo
Ludmilka [50]

Answer:\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}General Formulas and Concepts:

<u>Pre-Calculus</u>

  • Trigonometric Identities

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Integration

  • Integrals
  • Definite/Indefinite Integrals
  • Integration Constant C

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                    \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

U-Substitution

  • Trigonometric Substitution

Reduction Formula:                                                                                               \displaystyle \int {cos^n(x)} \, dx = \frac{n - 1}{n}\int {cos^{n - 2}(x)} \, dx + \frac{cos^{n - 1}(x)sin(x)}{n}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution (trigonometric substitution).</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle x = sin(u)
  2. [<em>u</em>] Differentiate [Trigonometric Differentiation]:                                         \displaystyle dx = cos(u) \ du
  3. Rewrite <em>u</em>:                                                                                                       \displaystyle u = arcsin(x)

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Trigonometric Substitution:                                                           \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[1 - sin^2(u)]^\Big{\frac{3}{2}} \, du
  2. [Integrand] Rewrite:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos(u)[cos^2(u)]^\Big{\frac{3}{2}} \, du
  3. [Integrand] Simplify:                                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \int\limits^a_b {cos^4(u)} \, du
  4. [Integral] Reduction Formula:                                                                       \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{4 - 1}{4}\int \limits^a_b {cos^{4 - 2}(x)} \, dx + \frac{cos^{4 - 1}(u)sin(u)}{4} \bigg| \limits^a_b
  5. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4}\int\limits^a_b {cos^2(u)} \, du
  6. [Integral] Reduction Formula:                                                                          \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg|\limits^a_b + \frac{3}{4} \bigg[ \frac{2 - 1}{2}\int\limits^a_b {cos^{2 - 2}(u)} \, du + \frac{cos^{2 - 1}(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  7. [Integral] Simplify:                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}\int\limits^a_b {} \, du + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  8. [Integral] Reverse Power Rule:                                                                     \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3}{4} \bigg[ \frac{1}{2}(u) \bigg| \limits^a_b + \frac{cos(u)sin(u)}{2} \bigg| \limits^a_b \bigg]
  9. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(u)sin(u)}{4} \bigg| \limits^a_b + \frac{3cos(u)sin(u)}{8} \bigg| \limits^a_b + \frac{3}{8}(u) \bigg| \limits^a_b
  10. Back-Substitute:                                                                                               \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{cos^3(arcsin(x))sin(arcsin(x))}{4} \bigg| \limits^a_b + \frac{3cos(arcsin(x))sin(arcsin(x))}{8} \bigg| \limits^a_b + \frac{3}{8}(arcsin(x)) \bigg| \limits^a_b
  11. Simplify:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x)}{8} \bigg| \limits^a_b + \frac{x(1 - x^2)^\Big{\frac{3}{2}}}{4} \bigg| \limits^a_b + \frac{3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  12. Rewrite:                                                                                                         \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(x) + 2x(1 - x^2)^\Big{\frac{3}{2}} + 3x\sqrt{1 - x^2}}{8} \bigg| \limits^a_b
  13. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:              \displaystyle \int\limits^a_b {(1 - x^2)^\Big{\frac{3}{2}}} \, dx = \frac{3arcsin(a) + 2a(1 - a^2)^\Big{\frac{3}{2}} + 3a\sqrt{1 - a^2}}{8} - \frac{3arcsin(b) + 2b(1 - b^2)^\Big{\frac{3}{2}} + 3b\sqrt{1 - b^2}}{8}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
Read 2 more answers
Other questions:
  • . The mean incubation time for a type of fertilized egg kept at a certain temperature is 25 days. Suppose that the incubation ti
    6·1 answer
  • Hello I need help...!!
    10·2 answers
  • Which unit has the greatest capacity? Tablespoon, quart, Pint or teaspoon?
    12·2 answers
  • rectangle has an area of 24 square units and a side length of 2 3/4 units. Find the other side length of the rectangle. Show you
    13·2 answers
  • Click on the words to go to the picture
    15·2 answers
  • Four interior angles of a pentagon measure 88°, 118, 132, and 100°. What is the measure of the fifth interior angle?
    8·2 answers
  • Find the slope,y-intercept,equation 
    12·2 answers
  • Find the distance between the two points (-7, 5) (-7, -4)
    7·1 answer
  • Can some help and explain this please? ​
    10·2 answers
  • In a laboratory experiment, the population of bacteria in a petri dish started off at 160 and is growing exponentially at 6% per
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!