Answer:
1/8 of the whole pasta or 1/2 of what's left

Let's solve ~
Assume width of rectangle be " x ", length = 3×width + 8 = 3x + 8 ~
Now, Perimeter of rectangle is :








Hence, width = x = 5 cm




And, length = 26 cm
Answer:
57776esae r esspustae
Step-by-step explanation:
Answer: -5/21.
Step-by-step explanation:
![\frac{2}{5}*[\frac{-3}{7} +(\frac{-1}{6})]=\frac{2}{5} *(-\frac{3}{7} -\frac{1}{6}) =\frac{2}{5}*(-\frac{3*6+1*7)}{7*6} )=\frac{2}{5}*(-\frac{18+7}{42})=\frac{2}{5}*(-\frac{25}{42})=-\frac{5}{21} .](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B5%7D%2A%5B%5Cfrac%7B-3%7D%7B7%7D%20%2B%28%5Cfrac%7B-1%7D%7B6%7D%29%5D%3D%5Cfrac%7B2%7D%7B5%7D%20%2A%28-%5Cfrac%7B3%7D%7B7%7D%20-%5Cfrac%7B1%7D%7B6%7D%29%20%3D%5Cfrac%7B2%7D%7B5%7D%2A%28-%5Cfrac%7B3%2A6%2B1%2A7%29%7D%7B7%2A6%7D%20%20%29%3D%5Cfrac%7B2%7D%7B5%7D%2A%28-%5Cfrac%7B18%2B7%7D%7B42%7D%29%3D%5Cfrac%7B2%7D%7B5%7D%2A%28-%5Cfrac%7B25%7D%7B42%7D%29%3D-%5Cfrac%7B5%7D%7B21%7D%20.)
Good luck an' have a nice day!
Answer:
x^2(3x-2) cubic inches OR in^3
OR
3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 cubic inches OR in^3
I AM UNAWARE IF YOU ASKED THAT ONE SIDE IS (3X-2) OR ALL. I WILL ANSWER BOTH PARTS
<em>-</em>
<em>NOTE</em><em>:</em><em> </em><em>'</em><em>^</em><em>'</em><em> </em><em>MEANS</em><em> </em><em>TO</em><em> </em><em>THE</em><em> </em><em>POWER</em><em> </em><em>OF</em><em>.</em><em>.</em>
<em>-</em>
Volume = v, abc = 3 sides of cube (height, width, length)
Using the formula for volume in a cube,

We can solve this.
If one side is (3x-2)in,
- (3x-2)(x)(x) = v.... x are the other two sides
- x^2(3x-2) = v
x^2(3x-2) cubic inches OR in^3
If all sides are (3x-2)in,
Use the formula,

We can solve this.
- (3x-2)(3x-2)(3x-2) = v
- (3x-2)^3 = v.... 3x = a and -2 = b
- (3x)^3 + [(3)(3x)(2)][2-3x] - (2)^3 = v
- 27x^3 + 18x(2-3x) -8 = v
- (27x^3 + 36x - 54x^2) - 8 = v.. Terms inside brackets - take 3x as common and leave out 8
- 3x(9x^2 -18x +12) = v... Take 3 as common again in the brackets
- 3x [ 3 ([3x^2 -6x] + 4) -8 = v....Take 3x common in the terms in square brackets
- 3x [ 3 [ 3x (x-2) + 4 ]] - 8 = v
- 3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 = v
3x { 3 [ 3x ( x - 2 ) + 4 ] } - 8 cubic inches OR in^3
___
If you have any questions regarding formulas or anything, comment and I will get back to you asap.
___