It should be a circle. That would be my best guess
Answer:
65 cm
Step-by-step explanation:
A= 1/2 bh
A= 1/2 (13 cm) (4 cm)
A= 65 cm
Correct statements are:
If it is reflected across the y-axis, its length still will be 12 units.
If it is rotated 270° about the origin, its length still will be 12 units.
If it is translated 15 units up, its length still will be 12 units.
<u>Step-by-step explanation:</u>
Whatever it may be rotation, reflection or translation, the size of the line will never change. So length of the line is same as 12 units in the image.
So the wrong statements are
If its reflected across y = -x then the length will no longer be 12 units.
If it is rotated 90° about the origin, then the length will no longer be 12 units.
If it is translated 18 units to the right, then the length will no longer be 12 units.
Answer:
the volume of a sphere = 4 ⁄ 3 πr^3
when r=2inches
Step-by-step explanation:
the volume of a sphere = 4 ⁄ 3 π×2³=32/3π or 33.5 inches³
Answer:
V = (About) 22.2, Graph = First graph/Graph in the attachment
Step-by-step explanation:
Remember that in all these cases, we have a specified method to use, the washer method, disk method, and the cylindrical shell method. Keep in mind that the washer and disk method are one in the same, but I feel that the disk method is better as it avoids splitting the integral into two, and rewriting the curves. Here we will go with the disk method.
![\mathrm{V\:=\:\pi \int _a^b\left(r\right)^2dy\:},\\\mathrm{V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy}](https://tex.z-dn.net/?f=%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cpi%20%5Cint%20_a%5Eb%5Cleft%28r%5Cright%29%5E2dy%5C%3A%7D%2C%5C%5C%5Cmathrm%7BV%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%7D)
The plus 1 in '1 + 2/x' is shifting this graph up from where it is rotating, but the negative 1 is subtracting the area between the y-axis and the shaded region, so that when it's flipped around, it becomes a washer.
![V\:=\:\int _1^3\:\pi \left[\left(1+\frac{2}{y}\right)^2-1\right]dy,\\\\\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx\\=\pi \cdot \int _1^3\left(1+\frac{2}{y}\right)^2-1dy\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\= \pi \left(\int _1^3\left(1+\frac{2}{y}\right)^2dy-\int _1^31dy\right)\\\\](https://tex.z-dn.net/?f=V%5C%3A%3D%5C%3A%5Cint%20_1%5E3%5C%3A%5Cpi%20%5Cleft%5B%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1%5Cright%5Ddy%2C%5C%5C%5C%5C%5Cmathrm%7BTake%5C%3Athe%5C%3Aconstant%5C%3Aout%7D%3A%5Cquad%20%5Cint%20a%5Ccdot%20f%5Cleft%28x%5Cright%29dx%3Da%5Ccdot%20%5Cint%20f%5Cleft%28x%5Cright%29dx%5C%5C%3D%5Cpi%20%5Ccdot%20%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2-1dy%5C%5C%5C%5C%5Cmathrm%7BApply%5C%3Athe%5C%3ASum%5C%3ARule%7D%3A%5Cquad%20%5Cint%20f%5Cleft%28x%5Cright%29%5Cpm%20g%5Cleft%28x%5Cright%29dx%3D%5Cint%20f%5Cleft%28x%5Cright%29dx%5Cpm%20%5Cint%20g%5Cleft%28x%5Cright%29dx%5C%5C%3D%20%5Cpi%20%5Cleft%28%5Cint%20_1%5E3%5Cleft%281%2B%5Cfrac%7B2%7D%7By%7D%5Cright%29%5E2dy-%5Cint%20_1%5E31dy%5Cright%29%5C%5C%5C%5C)

Our exact solution will be V = π(4In(3) + 8/3). In decimal form it will be about 22.2 however. Try both solution if you like, but it would be better to use 22.2. Your graph will just be a plot under the curve y = 2/x, the first graph.