Answer:
http://eldata2.neu.topica.vn/TXTOKT02/Giao%20trinh/03_NEU_TXTOKT02_Bai2_v1.0014109205.pdf
Step-by-step explanation:
If <em>x</em> + 1 is a factor of <em>p(x)</em> = <em>x</em>³ + <em>k</em> <em>x</em>² + <em>x</em> + 6, then by the remainder theorem, we have
<em>p</em> (-1) = (-1)³ + <em>k</em> (-1)² + (-1) + 6 = 0 → <em>k</em> = -4
So we have
<em>p(x)</em> = <em>x</em>³ - 4<em>x</em>² + <em>x</em> + 6
Dividing <em>p(x)</em> by <em>x</em> + 1 (using whatever method you prefer) gives
<em>p(x)</em> / (<em>x</em> + 1) = <em>x</em>² - 5<em>x</em> + 6
Synthetic division, for instance, might go like this:
-1 | 1 -4 1 6
... | -1 5 -6
----------------------------
... | 1 -5 6 0
Next, we have
<em>x</em>² - 5<em>x</em> + 6 = (<em>x</em> - 3) (<em>x</em> - 2)
so that, in addition to <em>x</em> = -1, the other two zeros of <em>p(x)</em> are <em>x</em> = 3 and <em>x</em> = 2
Answer:
A. 141.4 cm
Step-by-step explanation:
The piramide is 141.4cm
2a) if 1 ft³ weighs 150 lb==>the TOTAL VOLUME =5,000/150 =33.334 ft³
2b) 1 ft³ 1,728 in³. So the TOTAL volume in in³ =33.334 x 1728 = 57,600 in³
c) Volume =(1/3)(πR²).H but R = H then V= (1/3)(πR³).plug V (=57600)
57,600 = 1/3 (πR³) ==> R³ = (3 x 57600) / π ==> R = 38 in
d) Area x thickness = Volume ==> Area x 2 in = 57600 in then:
Are =57600/2 & Area =28,800 in²
Exponential growth would include, A = 20,000(1.08)^t, A=40(30), P=1700(1.07).
Decay would include, A=80(1/2)^t, A= 1600(.8), P=1700(.93)
Hope this helps.