Not completely sure but i think it is 16
no it would be 5600 i think
You must distribute first, so 3(8p+7r). That will equal 24p +21r. Then you must add all the values together according to like terms, so the variables must match. So simplified it will be 22+24p+30r
Recall that
sin(<em>a</em> + <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) + cos(<em>a</em>) sin(<em>b</em>)
sin(<em>a</em> - <em>b</em>) = sin(<em>a</em>) cos(<em>b</em>) - cos(<em>a</em>) sin(<em>b</em>)
Adding these together gives
sin(<em>a</em> + <em>b</em>) + sin(<em>a</em> - <em>b</em>) = 2 sin(<em>a</em>) cos(<em>b</em>)
To get 14 cos(39<em>x</em>) sin(19<em>x</em>) on the right side, multiply both sides by 7 and replace <em>a</em> = 19<em>x</em> and <em>b</em> = 39<em>x</em> :
7 (sin(19<em>x</em> + 39<em>x</em>) + sin(19<em>x</em> - 39<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) + sin(-20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
7 (sin(58<em>x</em>) - sin(20<em>x</em>)) = 14 cos(39<em>x</em>) sin(19<em>x</em>)
Hey there!!
Recursive formula :
... a( n ) = a ( n - 1 ) + 7
The first term is 12
To find the second term, we will need to substitute 2 in place of ' n '
2 term :
... a( 2 ) = a ( 2 - 1 ) + 7
... a( 2 ) = a( 1 ) + 7
We know a( 1 ) = 12
... a( 2 ) = 12 + 7
... 19 is the second term and we will need to use this to find the other terms.
Hope my answer helps!