Answer:
X = -10/6
X = -1,666666666666667
Step-by-step explanation:
First at all you join the X's
18x-12x = 14-24
Then you simplified:
6x = -10
X = -10/6
X = -1,666666666666667
Answer:

Step-by-step explanation:

Hope this helps!
Answer:
5
Step-by-step explanation:
Let the required number be x
![\huge {x}^{9} \div {x}^{6} = 125 \\ \\ \huge {x}^{9 - 6} = 125 \\ \\ \huge {x}^{3} = 125 \\ \\ \huge x = \sqrt[3]{125} \\ \\ \huge x = \sqrt[3]{ {5}^{3} } \\ \\ \huge \red{ x = 5}](https://tex.z-dn.net/?f=%20%5Chuge%20%7Bx%7D%5E%7B9%7D%20%20%5Cdiv%20%20%7Bx%7D%5E%7B6%7D%20%20%3D%20125%20%5C%5C%20%20%5C%5C%20%5Chuge%20%7Bx%7D%5E%7B9%20-%206%7D%20%20%3D%20125%20%5C%5C%20%20%5C%5C%20%5Chuge%20%7Bx%7D%5E%7B3%7D%20%20%3D%20125%20%5C%5C%20%20%5C%5C%20%5Chuge%20x%20%3D%20%20%5Csqrt%5B3%5D%7B125%7D%20%5C%5C%20%20%5C%5C%20%5Chuge%20x%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20x%20%3D%205%7D)
Let's assume that the statement "if n^2 is odd, then is odd" is false. That would mean "n^2 is odd" leads to "n is even"
Suppose n is even. That means n = 2k where k is any integer.
Square both sides
n = 2k
n^2 = (2k)^2
n^2 = 4k^2
n^2 = 2*(2k^2)
The expression 2(2k^2) is in the form 2m where m is an integer (m = 2k^2) which shows us that n^2 is also even.
So this contradicts the initial statement which forces n to be odd.