Answer:
left
Step-by-step explanation:
The partial fraction decomposition is ![\frac{8x + 19}{(x + 8)(x - 1)} = \frac{5}{x + 8} + \frac{3}{x - 1}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D%20%3D%20%5Cfrac%7B5%7D%7Bx%20%2B%208%7D%20%2B%20%5Cfrac%7B3%7D%7Bx%20-%201%7D)
<h3>How to determine the decomposition?</h3>
The fraction is given as:
![\frac{8x + 19}{(x + 8)(x - 1)}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D)
Split the fraction as follows:
![\frac{8x + 19}{(x + 8)(x - 1)} = \frac{A}{x + 8} + \frac{B}{x - 1}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D%20%3D%20%5Cfrac%7BA%7D%7Bx%20%2B%208%7D%20%2B%20%5Cfrac%7BB%7D%7Bx%20-%201%7D)
Take the LCM
![\frac{8x + 19}{(x + 8)(x - 1)} = \frac{Ax -A + Bx + 8B}{(x + 8)(x -1)}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D%20%3D%20%5Cfrac%7BAx%20-A%20%2B%20Bx%20%2B%208B%7D%7B%28x%20%2B%208%29%28x%20-1%29%7D)
Cancel the common factors
8x + 19 = Ax - A + Bx + 8B
By comparison, we have:
Ax + Bx = 8x
-A + 8B = 19
This gives
A + B = 8
-A + 8B = 19
Add both equations
9B = 27
Divide by 9
B = 3
Substitute B = 3 in A + B = 8
A + 3 = 8
Solve for A
A = 5
So, we have:
![\frac{8x + 19}{(x + 8)(x - 1)} = \frac{5}{x + 8} + \frac{3}{x - 1}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D%20%3D%20%5Cfrac%7B5%7D%7Bx%20%2B%208%7D%20%2B%20%5Cfrac%7B3%7D%7Bx%20-%201%7D)
Hence, the partial fraction decomposition is ![\frac{8x + 19}{(x + 8)(x - 1)} = \frac{5}{x + 8} + \frac{3}{x - 1}](https://tex.z-dn.net/?f=%5Cfrac%7B8x%20%2B%2019%7D%7B%28x%20%2B%208%29%28x%20-%201%29%7D%20%3D%20%5Cfrac%7B5%7D%7Bx%20%2B%208%7D%20%2B%20%5Cfrac%7B3%7D%7Bx%20-%201%7D)
Read more about partial fraction at:
brainly.com/question/12783868
#SPJ1
Answer:
40
Step-by-step explanation:
Let n represent the integer. Then the increase can be written as ...
n + (-12) = 28
We can add 12 to both sides of this equation:
n + (-12) + (+12) = 28 +12
n + 0 = 40 . . . . . . -12 and 12 total to zero; 28 and 12 total to 40.
n = 40
The integer is 40.
A graphing calculator can do a linear regression on these points very easily. The y-intercept is 107.
_____
If you want to do this by hand, you can use the 2-point form of the equation for a line, then evaluate for x=0.
.. y = (100 -102)/(35 -25)*(x -25) +102
.. y =-2/10*(0 -25) +102
.. y = 107