Answer:
y = 3x-6
Step-by-step explanation:
y = 3x−5
This is in slope intercept form
y = mx+b where m is the slope and b is the y intercept
m =3
Parallel lines have the same slope
We have the slope m=3 and a point (2,0)
y = mx+b
y = 3x+b
Substituting the point into the equation to solve for b
0 = 3(2)+b
0 = 6+b
b = -6
y = 3x-6
Answer:
y = -1/3x + 2
Step-by-step explanation:
Divide everything by 2
Answer:
7,460 (or 7460 as some non-native English speakers would write it) since you always round a number down when it ends in 1 through 4, and always round it up when it ends in 5 through 9.
Step-by-step explanation:
pls give me brainliest plssssssssssssssssssssss.
Step-by-step explanation:
if the 2 matrices are inverse, then their product must be the identity matrix
1 0
0 1
so,
m×3 + 2×-7 = 1
7×3 + 3×-7 = 0
m×-2 + 2×m = 0
7×-2 + 3×m = 1
that means we have to solve only
3m - 14 = 1
3m = 15
m = 5
Answer:
y = x^2/ 60 + 15
=>( x - h)^2 = 4a[ (x^2/6 + 15) - k ].
Step-by-step explanation:
Okay, in order to solve this question very well, one thing we must keep at the back of our mind is that the representation for the equation of a parabola is given as ; y = ax^2 + bx + c.
That is to say; y = ax^2 + bx + c is the equation for a parabola. So, we should be expecting our answer to be in this form.
So, from the question above we are given that "the satellite dish will be in the shape of a parabola and will be positioned above the ground such that its focus is 30 ft above the ground"
We will make an assumption that the point on the ground is (0,0) and the focus is (0,30). Thus, the vertex (h,k) = (0,15).
The equation that best describes the equation of the satellite is given as;
(x - h)^2 = 4a( y - k). ------------------------(1).
[Note that if (h,k) = (0,15), then, a = 15].
Hence, (x - 0)^2 = (4 × 15) (y - 15).
x^2 = 60(y - 15).
x^2 = 60y - 900.
60y = x^2 + 900.
y = x^2/ 60 + 15.
Hence, we will have;
(x - h)^2 = 4a[ (x^2/6 + 15) - k ].