We have that


using a graph tool
see the attached figure
The horizontal asymptote of this function is at <span>y=3</span><span>.
So,
the range of this function is from </span><span>
(−∞,3<span>
)</span></span>
Using derivatives, it is found that the x-values in which the slope belong to the interval (-1,1) are in the following interval:
(-15,-10).
<h3>What is the slope of the tangent line to a function f(x) at point x = x0?</h3>
It is given by the derivative at x = x0, that is:
.
In this problem, the function is:

Hence the derivative is:

For a slope of -1, we have that:
0.4x + 5 = -1
0.4x = -6
x = -15.
For a slope of 1, we have that:
0.4x + 5 = 1.
0.4x = -4
x = -10
Hence the interval is:
(-15,-10).
More can be learned about derivatives and tangent lines at brainly.com/question/8174665
#SPJ1
Answer:
a
Step-by-step explanation:
did the math :)
brainliest pls!
For this case we have to, by defining properties of powers and roots the following is fulfilled:
![\sqrt [n] {a ^ m} = a ^ {\frac {m} {n}}](https://tex.z-dn.net/?f=%5Csqrt%20%5Bn%5D%20%7Ba%20%5E%20m%7D%20%3D%20a%20%5E%20%7B%5Cfrac%20%7Bm%7D%20%7Bn%7D%7D)
We must rewrite the following expression:
![\sqrt [3] {8 ^ {\frac {1} {4} x}}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D)
Applying the property listed we have:
![\sqrt [3] {8 ^ {\frac {1} {4} x}} = 8 ^ {\frac{\frac {1} {4} x} {3} }= 8 ^ {\frac {1} {4 * 3} x} = 8 ^ {\frac {1} {12} x}](https://tex.z-dn.net/?f=%5Csqrt%20%5B3%5D%20%7B8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%7D%20%3D%208%20%5E%20%7B%5Cfrac%7B%5Cfrac%20%7B1%7D%20%7B4%7D%20x%7D%20%7B3%7D%20%7D%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B4%20%2A%203%7D%20x%7D%20%3D%208%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D)
Using the property again we have to:
![8 ^ {\frac {1} {12} x} = \sqrt [12] {8 ^ x}](https://tex.z-dn.net/?f=8%20%5E%20%7B%5Cfrac%20%7B1%7D%20%7B12%7D%20x%7D%20%3D%20%5Csqrt%20%5B12%5D%20%7B8%20%5E%20x%7D)
Thus, the correct option is option C
Answer:
Option C