The ideal gas constant is a proportionality constant that is added to the ideal gas law to account for pressure (P), volume (V), moles of gas (n), and temperature (T) (R). R, the global gas constant, is 8.314 J/K-1 mol-1.
According to the Ideal Gas Law, a gas's pressure, volume, and temperature may all be compared based on its density or mole value.
The Ideal Gas Law has two fundamental formulas.
PV = nRT, PM = dRT.
P = Atmospheric Pressure
V = Liters of Volume
n = Present Gas Mole Number
R = 0.0821atmLmoL K, the Ideal Gas Law Constant.
T = Kelvin-degree temperature
M stands for Molar Mass of the Gas in grams Mol d for Gas Density in gL.
Learn more about Ideal gas law here-
brainly.com/question/28257995
#SPJ4
Answer:
this app is for solving doubts not sending links ok
Answer:
She must be launched with minimum speed of <u>57.67 m/s</u> to clear the 520 m gap.
Step-by-step explanation:
Given:
The angle of projection of the projectile is,
°
Range of the projectile is,
m.
Acceleration due to gravity, 
The minimum speed to cross the gap is the initial speed of the projectile and can be determined using the formula for range of projectile.
The range of projectile is given as:

Plug in all the given values and solve for minimum speed,
.

Therefore, she must be launched with minimum speed of 57.67 m/s to clear the 520 m gap.
Answer:
The value is 
Explanation:
Generally the thermal efficiency is mathematically represented as

substituting [ 627°C + 273 = 900K ] for
and [ 90°C + 273 = 333K ] for 
So

=> 
Answer:
The direction of current in the second wire will be upward.
Explanation:
We first need to find the direction of the magnetic field due to the first wire using the right-hand thumb rule.
Knowing that, one can easily find the direction of the second wire by using the right-hand rule.
The force per unit length on wire 2 due to wire 1 is given by,

Therefore,

<em>Image attached for better understanding of the problem.</em>
<em>(Source: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/wirfor.html)</em>