I believe that Q is fourths? And Y is Yard.
Adding (or subtracting) a constant to every data value adds (or subtracts) the same constant to measures of position such as center,percentiles, max or min.
Its shape and spread such as range, IQR, standard deviation remain unchanged.
When we multiply (or divide) all the data values by any constant, all measures of position (such as the mean, median, and percentiles) and measures of spread (such as the range, the IQR, and the standard deviation) are multiplied (or divided) by that same constant.
Part A:
The lowest score is a measure of location, so both addition and multiplying the lowest score of test B by 40 and adding 50 to the result will affect the lowest score of test A.
Thus, the lowest score of test A is given by 40(21) + 50 = 890
Therefore, the lowest score of test A is 890.
Part B:
The mean score is a measure of location, so both
addition and multiplying the mean score of test B by 40 and adding 50
to the result will affect the lowest score of test A.
Thus, the mean score of test A is given by 40(29) + 50 = 1,210
Therefore, the mean score of test A is 890.
Part C:
The standard deviation is a measure of spread, so multiplying the standard deviation of test B by 40 will affect the standard deviation but adding 50
to the result will not affect the standard deviation of test A.
Thus, the standard deviation of test A is given by 40(2) = 80
Therefore, the standard deviation of test A is 80.
Part D
The Q3 score is a measure of location, so both
addition and multiplying the Q3 score of test B by 40 and adding 50
to the result will affect the Q3 score of test A.
Thus, the Q3 score of test A is given by 40(28) + 50 = 1,170
Therefore, the Q3 score of test a is 1,170.
Part E:
The median score is a measure of location, so both
addition and multiplying the median score of test B by 40 and adding 50
to the result will affect the median score of test A.
Thus, the median score of test A is given by 40(26) + 50 = 1,090
Therefore, the median score of test A is 1,090.
Part F:
The IQR is a measure of spread, so multiplying the IQR of test B by 40 will affect the IQR but adding 50
to the result will not affect the IQR of test A.
Thus, the IQR of test A is given by 40(6) = 240
Therefore, the IQR of test A is 240.
Answer:
12
Step-by-step explanation:
12 doesn't fit the data because it is so much farther from the general average of the others.
12 affects the median because with it, the median is 74. but without 12, the median is 76.
12 affects the mean because with it, the mean is 68.36. but without 12, the mean is 72.69.
Answer:
This is an ellipse.
Step-by-step explanation:

Applying the angle values in intervals of right angles (90°), the resulting set of values for z are:

(again)
If you look at the plot, you will observe how these values represent points in the xy plain. All of them belong to either the x or the y axis.
The resulting figure for the whole set of values of
is in fact an ellipse.
Answer:
The first box is c
second box is b
Third box is c
Step-by-step explanation: