Answer:
See below.
Step-by-step explanation:
Fifth root of 243 = 3,
Suppose r( cos Ф + i sinФ) is the fifth root of 243(cos 240 + i sin 240),
then r^5( cos Ф + i sin Ф )^5 = 243(cos 240 + i sin 240).
Equating equal parts and using de Moivre's theorem:
r^5 =243 and cos 5Ф + i sin 5Ф = cos 240 + i sin 240
r = 3 and 5Ф = 240 +360p so Ф = 48 + 72p
So Ф = 48, 120, 192, 264, 336 for 48 ≤ Ф < 360
So there are 5 distinct solutions given by:
3(cos 48 + i sin 48),
3(cos 120 + i sin 120),
3(cos 192 + i sin 192),
3(cos 264 + i sin 264),
3(cos 336 + i sin 336).. (Answer).
Answer:
$2600
Step-by-step explanation:
2/100×70000=1400
2/100×60000=1200
1400+1200=2600
SO heres what you have to do:
Hourly Spent: 60 x 4 = 240
0.10 x 240= 24
24+240=264
$264 is your answer!
Hope this helped!!! ;)
D = -(8-5) = -3
a = 47
an = a + (n-1)d = 47 + (-3) = 47 - 3 = 44