We want to find the values of a, b, c, and d such that the given matrix product is equal to a 2x2 identity matrix. We will solve a system of equations to find:
<h3>
Presenting the equation:</h3>
Basically, we want to solve:
![\left[\begin{array}{cc}-1&2\\a&1\end{array}\right]*\left[\begin{array}{cc}b&c\\1&d\end{array}\right] = \left[\begin{array}{cc}1&0\\0&1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-1%262%5C%5Ca%261%5Cend%7Barray%7D%5Cright%5D%2A%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Db%26c%5C%5C1%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D1%260%5C%5C0%261%5Cend%7Barray%7D%5Cright%5D)
The matrix product will be:
![\left[\begin{array}{cc}-b + 2&-c + 2d\\a*b + 1&a*c + d\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D-b%20%2B%202%26-c%20%2B%202d%5C%5Ca%2Ab%20%2B%201%26a%2Ac%20%2B%20d%5Cend%7Barray%7D%5Cright%5D)
Then we must have:
-b + 2 = 1
This means that:
b = 2 - 1 = 1
We also need to have:
a*b + 1 = 0
we know the value of b, so we just have:
a*1 + b = 0
Now the two remaining equations are:
-c + 2d = 0
a*c + d = 1
Replacing the value of a we get:
-c + 2d = 0
-c + d = 1
Isolating c in the first equation we get:
c = 2d
Replacing that in the other equation we get:
-(2d) + d = 1
-d = 1
Then:
c = 2d = 2*(-1) = -2
So the values are:
If you want to learn more about systems of equations, you can read:
brainly.com/question/13729904
The volume is 106 centimeters
Answer:
Eight members of Hoi's family were each charged $4 to go to a movie.
Step-by-step explanation:
Answer:
23
Step-by-step explanation:
because it was eight more.
because it was four times the amount .
The answer is 23
Answer:
Accrual accounting attempts to recognize revenues and expenses in the period in which they occur, regardless of when cash is collected or paid. The goal is to match expenses with the revenues they produce.: