i dont know, my personal thoughts is that I will not do it:)
Answer:
$678.74
Step-by-step explanation:
989.99-311.25 = 678.74
hoped this helped
I think it is the 3rd one, but I could be wrong. please go check out my question and see if you can help.
Answer:
not sure
Step-by-step explanation: not good at this stuf
Cone details:
Sphere details:
================
From the endpoints (EO, UO) of the circle to the center of the circle (O), the radius is will be always the same.
<u>Using Pythagoras Theorem</u>
(a)
TO² + TU² = OU²
(h-10)² + r² = 10² [insert values]
r² = 10² - (h-10)² [change sides]
r² = 100 - (h² -20h + 100) [expand]
r² = 100 - h² + 20h -100 [simplify]
r² = 20h - h² [shown]
r = √20h - h² ["r" in terms of "h"]
(b)
volume of cone = 1/3 * π * r² * h
===========================
![\longrightarrow \sf V = \dfrac{1}{3} * \pi * (\sqrt{20h - h^2})^2 \ ( h)](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Csf%20V%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%20%2A%20%5Cpi%20%20%2A%20%28%5Csqrt%7B20h%20-%20h%5E2%7D%29%5E2%20%20%5C%20%20%28%20h%29)
![\longrightarrow \sf V = \dfrac{1}{3} * \pi * (20h - h^2) (h)](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Csf%20V%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%20%2A%20%5Cpi%20%20%2A%20%2820h%20-%20h%5E2%29%20%20%28h%29)
![\longrightarrow \sf V = \dfrac{1}{3} * \pi * (20 - h) (h) ( h)](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Csf%20V%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%20%2A%20%5Cpi%20%20%2A%20%2820%20-%20h%29%20%28h%29%20%28%20h%29)
![\longrightarrow \sf V = \dfrac{1}{3} \pi h^2(20-h)](https://tex.z-dn.net/?f=%5Clongrightarrow%20%5Csf%20V%20%3D%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cpi%20h%5E2%2820-h%29)
To find maximum/minimum, we have to find first derivative.
(c)
<u>First derivative</u>
![\Longrightarrow \sf V' =\dfrac{d}{dx} ( \dfrac{1}{3} \pi h^2(20-h) )](https://tex.z-dn.net/?f=%5CLongrightarrow%20%5Csf%20V%27%20%3D%5Cdfrac%7Bd%7D%7Bdx%7D%20%28%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cpi%20h%5E2%2820-h%29%20%29)
<u>apply chain rule</u>
![\sf \Longrightarrow V'=\dfrac{\pi \left(40h-3h^2\right)}{3}](https://tex.z-dn.net/?f=%5Csf%20%5CLongrightarrow%20V%27%3D%5Cdfrac%7B%5Cpi%20%5Cleft%2840h-3h%5E2%5Cright%29%7D%7B3%7D)
<u>Equate the first derivative to zero, that is V'(x) = 0</u>
![\Longrightarrow \sf \dfrac{\pi \left(40h-3h^2\right)}{3}=0](https://tex.z-dn.net/?f=%5CLongrightarrow%20%5Csf%20%5Cdfrac%7B%5Cpi%20%5Cleft%2840h-3h%5E2%5Cright%29%7D%7B3%7D%3D0)
![\Longrightarrow \sf 40h-3h^2=0](https://tex.z-dn.net/?f=%5CLongrightarrow%20%5Csf%2040h-3h%5E2%3D0)
![\Longrightarrow \sf h(40-3h)=0](https://tex.z-dn.net/?f=%5CLongrightarrow%20%5Csf%20h%2840-3h%29%3D0)
![\Longrightarrow \sf h=0, \ 40-3h=0](https://tex.z-dn.net/?f=%5CLongrightarrow%20%5Csf%20h%3D0%2C%20%5C%2040-3h%3D0)
<u />
<u>maximum volume:</u> <u>when h = 40/3</u>
![\sf \Longrightarrow max= \dfrac{1}{3} \pi (\dfrac{40}{3} )^2(20-\dfrac{40}{3} )](https://tex.z-dn.net/?f=%5Csf%20%5CLongrightarrow%20max%3D%20%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cpi%20%28%5Cdfrac%7B40%7D%7B3%7D%20%29%5E2%2820-%5Cdfrac%7B40%7D%7B3%7D%20%29)
![\sf \Longrightarrow maximum= 1241.123 \ cm^3](https://tex.z-dn.net/?f=%5Csf%20%5CLongrightarrow%20maximum%3D%201241.123%20%5C%20cm%5E3)
<u>minimum volume:</u> <u>when h = 0</u>
![\sf \Longrightarrow min= \dfrac{1}{3} \pi (0)^2(20-0)](https://tex.z-dn.net/?f=%5Csf%20%5CLongrightarrow%20min%3D%20%20%5Cdfrac%7B1%7D%7B3%7D%20%5Cpi%20%280%29%5E2%2820-0%29)
![\sf \Longrightarrow minimum=0 \ cm^3](https://tex.z-dn.net/?f=%5Csf%20%5CLongrightarrow%20minimum%3D0%20%5C%20cm%5E3)