1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kondaur [170]
3 years ago
15

the half-life of uranium -238 is 4.5 × 10 to the power of 9 years. The half-life of uranium-238 than that of uranium-234

Mathematics
1 answer:
Anika [276]3 years ago
5 0

Answer:

Uranium-234 is an isotope of uranium. In natural uranium and in uranium ore, U-234 occurs as an indirect decay product of uranium-238, but it makes up only 0.0055% (55 parts per million) of the raw uranium because its half-life of just 245,500 years is only about 1/18,000 as long as that of U-238.

Step-by-step explanation:


You might be interested in
Which function has the smallest y-intercept value?
Lerok [7]

Answer:

Could you... put it normally?

Step-by-step explanation:

It's kinda confusing to read, so much understand

8 0
3 years ago
What is value of x<br> Plz help
KatRina [158]

Answer:

10√2

Step-by-step explanation:

This is a 45-45-90 triangle which means that the two non-hyptonouse lenghts are the same which means that the bottom lenght of the triangle is also 10 units

We can then use a^2+b^2=c^2 to solve for the last side

so we have

10^2+10^2=x^2

200=x^2

sqrt200=x

and I see that they want an exact answer so you simplify sqrt200 to

10√2

4 0
3 years ago
Can you please help me thank you!!!
taurus [48]

Answer:

517.5 mi^2

Step-by-step explanation:

Divide shapes into 3 shapes ( 1 triangle and 2 rectangles

b = 17

h = 25

Area of triangle =  Bh

A =  (17)(25)

A = 212.5 mi^2

Area of 1st rectangle = lw = 17(9) = 153 mi^2

Area of 2nd rectangle = lw = 19(8) = 152 mi^2

Area of figure = 212.5 +153 + 152 = 517.5 mi^2

8 0
3 years ago
In the figure, triangles ABC and DEF are congruent.
Zinaida [17]
It’s d hope it helps
8 0
3 years ago
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Solve 3sinx-4sin^3 x= -1
    15·1 answer
  • What is the first step when evaluating the expression 8 + 6 – 4 ÷ 4 + 2?
    7·2 answers
  • WILL GIVE BRAINLIEST!!!!
    10·2 answers
  • Explain the steps involved in adding two rational<br> expressions.
    8·2 answers
  • two students club plan to share a bus on a trip to the capital transportation at lunch for day cost $12 per student one club has
    13·1 answer
  • “what is the equation of a conic with vertices (-9,3) and (7,3) and foci (-5,3) and (3,3)”
    8·1 answer
  • Dominic's water jug holds 1.25 quarts. Terrell says he can find the capacity of the jug in fluid ounces by dividing 1.25 by 32.
    9·2 answers
  • -16 + 2(3 + 4x) due soon
    9·2 answers
  • Find the total surface area. Round to the nearest hundredth if necessary.
    15·1 answer
  • F(x){3/4x+2 If x≠2<br> {-4. If x=2 <br> Whats f(-5), f(2),f(4)
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!