Original position:
A-(-8,-4)
B-(-6,3)
C-(-3,7)
D-(-2,-2)
Translation:
A'-(-4,-4)
B'-(-2,3)
C'-(1,7)
D'-(2,-2)
Vertex C will be in quadrant 1 (+,+) after being translated 4 unites to the right.
Step-by-step explanation:
Left hand side:
4 [sin⁶ θ + cos⁶ θ]
Rearrange:
4 [(sin² θ)³ + (cos² θ)³]
Factor the sum of cubes:
4 [(sin² θ + cos² θ) (sin⁴ θ − sin² θ cos² θ + cos⁴ θ)]
Pythagorean identity:
4 [sin⁴ θ − sin² θ cos² θ + cos⁴ θ]
Complete the square:
4 [sin⁴ θ + 2 sin² θ cos² θ + cos⁴ θ − 3 sin² θ cos² θ]
4 [(sin² θ + cos² θ)² − 3 sin² θ cos² θ]
Pythagorean identity:
4 [1 − 3 sin² θ cos² θ]
Rearrange:
4 − 12 sin² θ cos² θ
4 − 3 (2 sin θ cos θ)²
Double angle formula:
4 − 3 (sin (2θ))²
4 − 3 sin² (2θ)
Finally, apply Pythagorean identity and simplify:
4 − 3 (1 − cos² (2θ))
4 − 3 + 3 cos² (2θ)
1 + 3 cos² (2θ)
P = 3r + 2s --> P - 3r = 3r - 3r + 2s
2s = P - 3r --> 2s/2 = (P - 3r)/2
s = (P - 3r)/2
Answer:
Step-by-step explanation:
36 is the anwser