To determine the temperature of the gas, we need to assume ideal gas to use the equation PV=nRT where P represents the pressure, V is the volume, n is the number of moles, T is the temperature and R is the universal gas constant. We calculate as follows:
PV = nRT
T = PV / nR
T = (1.26 atm) ( 208 L ) / 0.08205 L-atm/mol-K ( 9.95 mol )
T = 321.02 K
Hope this answers the question.
Answer:
c. add coefficients as needed
Explanation:
A chemical equation is defined as the equation that shows changes in a chemical reaction. A chemical equation consist of reactant and product, reactant is at left side of the arrow and product is at right side of the arrow.
Reactant => Product
While balancing a chemical equation, the basic rule is to balance the coefficient as required. Coefficient represents the number of molecules and is used at front of a chemical symbol. Change in coefficient helps balance the number of atoms or molecules of the substances on both the sides of the arrow.
Subscripts are never allowed to change because it can change the chemical involved in the reaction.
Hence, the correct answer is "c. add coefficients as needed".
Answer:A property that changes if the amount of substance changes
Explanation:
This is the answer
Answer:
yes
Explanation:
because it help the body hydrate
Answer:
P₂ = 3.86 atm .
Explanation:
We assume that during this change , the temperature of the gas remains constant .
So the gas will obey Boyle's law .
P₁ V₁ = P₂V₂
5.08 x 7.56 = P₂ x 9.94
P₂ = 3.86 atm .