The answer is 18.02 g/mol
The full question asks to decide whether the gas was a specific gas. That part is missing in your question. You need to decide whether the gas in the flask is pure helium.
To decide it you can find the molar mass of the gas in the flask, using the ideal gas equation pV = nRT, and then compare with the molar mass of the He.
From pV = nRT you can find n, after that using the mass of gass in the flask you use MM = mass/moles.
1) From pV = nRT, n = pV / RT
Data:
V = 118 ml = 0.118 liter
R = 0.082 atm*liter/mol*K
p = 768 torr * 1 atm / 760 torr = 1.0105 atm
T = 35 + 273.15 = 308.15 K
n = 1.015 atm * 0.118 liter / [ 0.082 atm*liter/K*mol * 308.15K] =0.00472 mol
mass of gas = mass of the fask with the gas - mass of the flasl evacuated = 97.171 g - 97.129 g = 0.042
=> MM = mass/n = 0.042 / 0.00472 = 8.90 g/mol
Now from a periodic table or a table you get that the molar mass of He is 4g/mol
So the numbers say that this gas is not pure helium , because its molar mass is more than double of the molar mass of helium gas.
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.
Well i do think they're the same.