The correct answer is 12.2% BaO.
The solution is found by dividing the mass of the BaO, which is 25.8 grams, by the total mass of the solution, which is 212 grams, then multiplying it by 100 to get the percentage:
Answer:
The final volume of NaOH solution is 30ml
Explanation:
We all know that
V1S1 = V2S2
or V1= V2S2÷S1
or V1= V2×S2×1/S1
or V1=100×0.15×1/0.50
V1= 30
∴30 ml NaOH solution is required to prepare 0.15 M from 100ml 0.50 M NaOH solution.
KauCl4 :
K = + 1
au = + 7
Cl = - 2
hope this helps!
Answer: D=8.27 g/cm³
Explanation:
Density is mass/volume. Mass is in grams and volume is in liters. In this case, the problem wants our volume to be in cm³. All we need to do is to make some conversions to convert kg/m³ to g/cm³.

With this equation, the m³ and kg cancel out, and we are left with g/cm³.
D=8.27 g/cm³
Answer:
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates
Explanation:
Recall that , depression present in freezing point is calculated with the formulae = solute particles Molarity x KF
0.3473 = m * 1.86
Solving, m = 0.187 m
Moles of HClO2 = mass / molar mass = 5.85 / 68.5 = 0.0854 mol
Molality = moles / mass of water in kg = 0.0854 / 1 = 0.0854 m
Initial molality
Assuming that a % x of the solute dissociates, we have the ICE table:
HClO2 H+ + ClO2-
initial concentration: 0.0854 0 0
final concentration: 0.0854(1-x/100) 0.0854x/100 0.0854x / 100
We see that sum of molality of equilibrium mixture = freezing point molality
0.0854( 1 - x/100 + x/100 + x/100) = 0.187
2.1897 = 1 + x / 100
x = 100 * 1.1897 = 118.97 %, which is > 100 meaning that all of the HClO2 dissociates