Answer:
Reject H0
Step-by-step explanation:
Given :
H0: The frequencies are equal. H1: The frequencies are not equal
Category f0 A 10 B 30 C 30 D 10
Total f0 = (10 + 30 + 30 + 10) = 80
Expected frequency is the same for all categories :
Expected frequency = 1/4 * 80 = 20
χ² = Σ(observed - Expected)² / Expected
χ² = (10-20)^2 / 20 + (30-20)^2 /20 + (30-20)^2 / 20 + (10-20)^2 / 20
χ² = (5 + 5 + 5 + 5) = 20
Pvalue = 0.00017
Pvalue < α

now, for a rational expression, the domain, or "values that x can safely take", applies to the denominator NOT becoming 0, because if the denominator is 0, then the rational turns to
undefined.
now, what value of "x" makes this denominator turn to 0, let's check by setting it to 0 then.
![\bf 2-x^{12}=0\implies 2=x^{12}\implies \pm\sqrt[12]{2}=x\\\\ -------------------------------\\\\ \cfrac{x^2-9}{2-x^{12}}\qquad \boxed{x=\pm \sqrt[12]{2}}\qquad \cfrac{x^2-9}{2-(\pm\sqrt[12]{2})^{12}}\implies \cfrac{x^2-9}{2-\boxed{2}}\implies \stackrel{und efined}{\cfrac{x^2-9}{0}}](https://tex.z-dn.net/?f=%5Cbf%202-x%5E%7B12%7D%3D0%5Cimplies%202%3Dx%5E%7B12%7D%5Cimplies%20%5Cpm%5Csqrt%5B12%5D%7B2%7D%3Dx%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0A%5Ccfrac%7Bx%5E2-9%7D%7B2-x%5E%7B12%7D%7D%5Cqquad%20%5Cboxed%7Bx%3D%5Cpm%20%5Csqrt%5B12%5D%7B2%7D%7D%5Cqquad%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%28%5Cpm%5Csqrt%5B12%5D%7B2%7D%29%5E%7B12%7D%7D%5Cimplies%20%5Ccfrac%7Bx%5E2-9%7D%7B2-%5Cboxed%7B2%7D%7D%5Cimplies%20%5Cstackrel%7Bund%20efined%7D%7B%5Ccfrac%7Bx%5E2-9%7D%7B0%7D%7D)
so, the domain is all real numbers EXCEPT that one.
I am sure it is
$20 ÷ 3
But solving it....
Answer:
272.3 or just 272
Step-by-step explanation:
To find answer first find the area of the circle, then add the 18.
A=r*r*3.14 (pi) = 9*9*3.14=254.34
254.34+18=272.34
Hope this helps!!! :)