There are only two possible outcomes in the table that satisfy <em>x</em> ≤ -3; either <em>x</em> = -5 or <em>x</em> = -3. Then
P(<em>x</em> ≤ -3) = P(<em>x</em> = -5) + P(<em>x</em> = -3) = 0.17 + 0.13 = 0.3
Step-by-step explanation:
all angles of a triangle sum to 180
180 = 15x + 24x +21x
180=60x
solve for x
then substitute that for 24(x) to get the angle
Hey there, I hope I can be of assistance today!
While there are
no graphs, I can provide you with the graph to answer your question assuming you have choices of graphs!
Hope this helps!
To solve this we are going to use formula for the future value of an ordinary annuity:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
where

is the future value

is the periodic payment

is the interest rate in decimal form

is the number of times the interest is compounded per year

is the number of years
We know from our problem that the periodic payment is $50 and the number of years is 3, so

and

. To convert the interest rate to decimal form, we are going to divide the rate by 100%


Since the interest is compounded monthly, it is compounded 12 times per year; therefore,

.
Lets replace the values in our formula:
![FV=P[ \frac{(1+ \frac{r}{n} )^{nt} -1}{ \frac{r}{n} } ]](https://tex.z-dn.net/?f=FV%3DP%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7Br%7D%7Bn%7D%20%29%5E%7Bnt%7D%20-1%7D%7B%20%5Cfrac%7Br%7D%7Bn%7D%20%7D%20%5D)
![FV=50[ \frac{(1+ \frac{0.04}{12} )^{(12)(3)} -1}{ \frac{0.04}{12} } ]](https://tex.z-dn.net/?f=FV%3D50%5B%20%5Cfrac%7B%281%2B%20%5Cfrac%7B0.04%7D%7B12%7D%20%29%5E%7B%2812%29%283%29%7D%20-1%7D%7B%20%5Cfrac%7B0.04%7D%7B12%7D%20%7D%20%5D)

We can conclude that after 3 years you will have $1909.08 in your account.
Answer:
-2x + 5 = -4k
Step-by-step explanation: