1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
allsm [11]
3 years ago
10

The value of n in the inequality 3n + 1 < 7 is

Mathematics
1 answer:
Nana76 [90]3 years ago
7 0

Answer:

n<2

Step-by-step explanation:

3n+1 < 7

3n + 1 + (-1) < 7 +(-1)

3n < 6

(3n)/3< 6/3

n < 2

Hope this helps!!!

You might be interested in
ABCDE ~ FGHIJ. Figure 2 is a dilation of figure 1, and the scale factor is 0.6. Given that FG = 12 cm, find AB.
avanturin [10]
We known that the figures are similar if and only if the corresponding sides and and angles have the common scale factor. In this item, the scale factor is 0.6. The length of AB is determined by multiplying the length of FG with the scale factor. That is,
                            AB = FG x scale factor
                            AB = (12 cm) x 0.6
                            AB = 7.2 cm
Thus, the length of side AB is 7.2 cm. 
6 0
3 years ago
Read 2 more answers
Please tel me what goes where
maria [59]

Step-by-step explanation:

A- Equilateral (all of the angles are the same)

B- isosceles (just two angles are the same)

C- scalene (non of the angles are the same)

7 0
3 years ago
Read 2 more answers
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
In a game, if you roll a 6 on a 6-sided number cube, you lose a turn.
Julli [10]
A) the probability is 1 in 6 (1/6); there are six numbers and only one is 6, therefore 1 in 6
B) the probability is 5 in 6 (5/6); there are 6 numbers and only one is not 6, therefore 5 in 6
C) the probability of rolling a 6 is 1 in 6 and the probability of not rolling a 6 is 5 in 6
D) the probability is again 1 in 6 (1/6); 120 divided by 6 is 20, and 20/120 simplifies to 1/6
thats the best i can do to explain
4 0
3 years ago
Simplify 2x 2 - y for x = 3 and y = -2.<br> 20<br> 14<br> 16<br> 10<br> i need help please
disa [49]
2x^2-y

Plug in the values. 

2(3)^2-(-2)

2(3)^2+2

Exponents first. 

2*9+2

18+2

20

The answer is 20. 

I hope this helps!
~kaikers
6 0
3 years ago
Other questions:
  • Bog
    14·2 answers
  • Solve x-y=5 and -3x+2y=-7
    13·1 answer
  • (5 × 10^5) × (6 × 10^-4) in a simplified expression
    10·1 answer
  • Carter rolls a fair number cube 18 times.Which is the best prediction for the number of times he will roll a number that is odd
    12·1 answer
  • I need helpppp :((((((( 20 marks for this summative
    11·1 answer
  • A rectangular sand box has a length of 5 1/3 feet and a width of 3 3/4 feet. What is the perimeter in mixed number?
    13·1 answer
  • 295 words in 6 minutes ; What are the words/min.? (round to the nearest tenth)
    11·2 answers
  • Calculate the average rate of change for the given function, from x = −3 to x = 7.
    9·1 answer
  • Find the value of +x18 when =x8.
    12·2 answers
  • Due the end of the week pls help.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!