Answer:
-2/5
2
Step-by-step explanation:
Slope is rise over run according to my former algebra teacher, but I learned it differently (still correct tho).
The first moves 2 units down so negative 2, and moves 5 units right, so -2/5 since the rise is -2, and run is 5.
The second one moves 2 x-units for every 1 y-unit, so the slope is 2,
The fundamental theorem of algebra states that a polynomial with degree n has at most n solutions. The "at most" depends on the fact that the solutions might not all be real number.
In fact, if you use complex number, then a polynomial with degree n has exactly n roots.
So, in particular, a third-degree polynomial can have at most 3 roots.
In fact, in general, if the polynomial
has solutions
, then you can factor it as

So, a third-degree polynomial can't have 4 (or more) solutions, because otherwise you could write it as

But this is a fourth-degree polynomial.
Might have to experiment a bit to choose the right answer.
In A, the first term is 456 and the common difference is 10. Each time we have a new term, the next one is the same except that 10 is added.
Suppose n were 1000. Then we'd have 456 + (1000)(10) = 10456
In B, the first term is 5 and the common ratio is 3. From 5 we get 15 by mult. 5 by 3. Similarly, from 135 we get 405 by mult. 135 by 3. This is a geom. series with first term 5 and common ratio 3. a_n = a_0*(3)^(n-1).
So if n were to reach 1000, the 1000th term would be 5*3^999, which is a very large number, certainly more than the 10456 you'd reach in A, above.
Can you now examine C and D in the same manner, and then choose the greatest final value? Safe to continue using n = 1000.
About 10 songs because if you add up all ten numbers of all the songs then you divide, then you divide again you will get 10 songs