Answer:
y=2/7x+9
Step-by-step explanation:
Slope-intercept form is written y=mx+b.
y= also known as f(x), and is always by itself in slope-intercept form.
m= the slope.
x= the variable written to the right of the slope.
b= the y-intercept.
We know that the slope is 2/7 and the y-intercept in the equation is 9. Therefore, we can plug these numbers into the equation. So...
y=2/7x+9
is the correct equation written in slope-intercept form.
Hope this helps!! Have an amazing day (^人^)
Answer:
The length of the ladder = 6.5077 ft
Step-by-step explanation:
Given A ladder leans against the side of a house
Given the angle of elevation of the ladder is 68° when the bottom of the ladder is 16 ft from the side of the house
Let 'C' be the point of observation.
Given CA= 16 ft
From right angle triangle
x = 16 × cos 68°
x = 16 × 0.4067
x = 6.5077
x = 6.5 ft
The length of the ladder = 6.5 ft
Answer:
w=32
Step-by-step explanation:
w/4 = 8
4/1 * w/4 = 8*4
w=32
Using the binomial distribution, it is found that there is a 0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
<h3>What is the binomial distribution formula?</h3>
The formula is:


The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
With 5 shoots, the probability of making at least one is
, hence the probability of making none, P(X = 0), is
, hence:

![\sqrt[5]{(1 - p)^5} = \sqrt[5]{\frac{232}{243}}](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7B%281%20-%20p%29%5E5%7D%20%3D%20%5Csqrt%5B5%5D%7B%5Cfrac%7B232%7D%7B243%7D%7D)
1 - p = 0.9908
p = 0.0092
Then, with 6 shoots, the parameters are:
n = 6, p = 0.0092.
The probability that at least two of them make it inside the recycling bin is:

In which:
[P(X < 2) = P(X = 0) + P(X = 1)
Then:



Then:
P(X < 2) = P(X = 0) + P(X = 1) = 0.9461 + 0.0527 = 0.9988

0.0012 = 0.12% probability at least two of them make it inside the recycling bin.
More can be learned about the binomial distribution at brainly.com/question/24863377
#SPJ1