Answer:
Rs 75,000
Step-by-step explanation:
Let the total value of property be x
If one-fifth of that is given to son
property with son = 1/5 of total value of property = 1/5 of x = x/5
If one-third of that is given to daughter
property with daughter = 1/3 of total value of property = 1/3 of x = x/3
remaining property after giving the portions to son and daughter
= total value of property - property with son -property with daughter
= x - x/5 - x/3
taking LCM of 5 and 3 (15)
= (15x - 3x - 5x)/15
= 7x/15
Given that remaining property was given to wife
property with wife = 7x/15
it is given that wife got 35000 Rs
thus,
7x/15 = 35,000
7x = 35,000*15 = 525,000
x = 525,000/7 = 75,000
Thus, total worth of property =Rs 75,000 Answer
It’s A). x=20 y=128.
do you need the work?
Step-by-step explanation:
1) let the number=x
six times a number=6x
Condition:
6x+4=22
2) eleven times a number=11x
Condition:
11x-5=50
3) 9 times a number=9x
Condition:
9x-7=-16
<u>N</u><u>o</u><u>t</u><u>e</u><u>:</u><u>i</u><u>f</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>n</u><u>e</u><u>e</u><u>d</u><u> </u><u>t</u><u>o</u><u> </u><u>a</u><u>s</u><u>k</u><u> </u><u>a</u><u>n</u><u>y</u><u> </u><u>question</u><u> </u><u>please</u><u> </u><u>let</u><u> </u><u>me</u><u> </u><u>know</u><u>.</u>
Answer:
Bias for the estimator = -0.56
Mean Square Error for the estimator = 6.6311
Step-by-step explanation:
Given - A normally distributed random variable with mean 4.5 and standard deviation 7.6 is sampled to get two independent values, X1 and X2. The mean is estimated using the formula (3X1 + 4X2)/8.
To find - Determine the bias and the mean squared error for this estimator of the mean.
Proof -
Let us denote
X be a random variable such that X ~ N(mean = 4.5, SD = 7.6)
Now,
An estimate of mean, μ is suggested as

Now
Bias for the estimator = E(μ bar) - μ
= 
= 
= 
= 
= 
= 3.9375 - 4.5
= - 0.5625 ≈ -0.56
∴ we get
Bias for the estimator = -0.56
Now,
Mean Square Error for the estimator = E[(μ bar - μ)²]
= Var(μ bar) + [Bias(μ bar, μ)]²
= 
= 
= ![\frac{1}{64} ( [{3Var(X_{1}) + 4Var(X_{2})] }) + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%28%20%5B%7B3Var%28X_%7B1%7D%29%20%2B%204Var%28X_%7B2%7D%29%5D%20%20%7D%29%20%2B%200.3136)
= ![\frac{1}{64} [{3(57.76) + 4(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B%7B3%2857.76%29%20%2B%204%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [7(57.76)}] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B7%2857.76%29%7D%5D%20%20%7D%20%2B%200.3136)
= ![\frac{1}{64} [404.32] } + 0.3136](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B64%7D%20%5B404.32%5D%20%20%7D%20%2B%200.3136)
= 
= 6.6311
∴ we get
Mean Square Error for the estimator = 6.6311