<em>h</em><em>i</em><em> </em><em>I am interested for your answers but I can't find 5x-3 in my profile as my number and I am currently in my second week and simplify days of my contract for my current role </em>
<em>the</em><em> </em><em>following</em><em> </em><em>3x</em><em> </em><em>are</em><em> </em><em>some</em><em> </em><em>numbers</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>and</em><em> </em><em>your</em><em> </em><em>answers</em><em> </em><em>will</em><em> </em><em>not</em><em> </em><em>care</em><em> </em><em>for</em><em> </em><em>you</em><em> </em><em>and</em><em> </em><em>your</em><em> </em><em>answers</em><em> </em><em>to</em><em> </em><em>all</em><em> </em><em>of</em><em> </em><em>the</em><em> </em><em>boxes</em><em> </em><em /><em> </em><em>in</em><em> </em><em>my</em><em> </em><em>number</em><em> </em><em>of</em><em> </em><em>days</em><em> </em>
Answer: 1/2
Step-by-step explanation:
Answer:

Step-by-step explanation:
Given two expressions ,
And , we need to find the LCM , that is lowest common factor . So , let's factorise them seperately .
<u>Factorising</u><u> </u><u>x²</u><u> </u><u>-</u><u> </u><u>9</u><u> </u><u>:</u><u>-</u><u> </u>
<u>Factorising</u><u> </u><u>3x</u><u>³</u><u> </u><u>+</u><u> </u><u>8</u><u>1</u><u> </u>
Hence we can see that (x+3) is common factor in both expressions.
<u>Hence</u><u> </u><u>the</u><u> </u><u>LCM</u><u> </u><u>is</u><u> </u><u>(</u><u> </u><u>x</u><u>+</u><u>3</u><u> </u><u>)</u><u> </u><u>.</u>
Step-by-step explanation:

Answer:
length and width=4
height=8
Step-by-step explanation:
Hello to solve this problem we must propose a system of equations of 3x3, that is to say 3 variables and 3 equations.
Ecuation 1
Leght=Width
.L=W
Ecuation 2
To raise the second equation we consider that the length and width of 4 inches less than the height of the box
H-4=W
Ecuation 3
To establish equation number 3, we find the volume of a prism that is the result of multiplying length, width, and height
LxWxH=128
From ecuation 1(w=h)

solving for H

<em />
<em>Using ecuation 2</em>
H-4=W

Now we find the roots of the equation, 2 of them are imaginary, and only one results in 4
W=4in
L=4in
to find the height we use the ecuation 2
H-4=W
H=4+W
H=4+4=8
H=8IN