Use the zeroes to figure this out... x=-18, y=9
Answer:
x=y+3
Step-by-step explanation:
you just swap variables.
The answer is B or the purple one
Answer: Box3 has 120 oranges.
Box1 has 150 oranges.
Box has 130 oranges.
Step-by-step explanation:
I will answer this in English.
The question says:
3 boxes have 400 oranges.
The first one has 20 more than the second and 30 more than the third.
So we have 3 equations:
box1 + box2 + box3 = 400
box1 = box2 + 20
box1 = box3 + 30
Now, we can take the variable box1 in the third equation and replace it on the other two.
box3 + 30 + box2 + box3 = 400
box3 + 30 = box2 + 20
Now we can isolate one of the variables in the second equation, let's isolate box2.
box2 = box3 + 30 - 20 = box3 + 10
now we can replace it in the other equation:
box3 + 30 + box2 + box3 = 400
box3 + 30 + box3 + 10 + box3 = 400
3*box3 + 40 = 400
3*box3 = 400 - 40 = 360
box3 = 360/3 = 120.
Box3 has 120 oranges.
Box1 has 120 + 30 = 150 oranges.
Box has 150 - 20 = 130 oranges.
(2x-3y)^5
(2x-3y)(2x-3y)(2x-3y)(2x-3y)(2x-3y)
1st and 2nd power :
(2x-3y)(2x-3y) = 2x(2x-3y)-3y(2x-3y) = 4x² - 6xy - 6xy + 9y²
= 4x² - 12xy + 9y²
3rd power:
(2x-3y)(4x² - 12xy + 9y²) = 2x(4x² - 12xy + 9y²) - 3y(4x² - 12xy + 9y²)
8x³ - 24x²y + 18xy² - 12x²y +36xy² - 27y³
8x³ - 24x²y - 12x²y + 18xy² + 36xy² - 27y³
8x³ - 36x²y + 54xy² - 27y³
4th power
(2x-3y)(8x³ - 36x²y + 54xy² - 27y³) = 2x(8x³ - 36x²y + 54xy² - 27y³) -3y(8x³ - 36x²y + 54xy² - 27y³) = 16x^4 - 72x³y + 108x²y² - 54xy³ - 24x³y + 108x²y² - 162xy³ + 81y^4
16x^4 - 72x³y - 24x³y + 108x²y² + 108x²y² - 54xy³ - 162xy³ + 81y^4
16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4
5th power
(2x-3y)(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
2x(</span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4) - 3y(<span>16x^4 - 96x³y + 216x²y² - 216xy³ + 81y^4)
= 32x^5 - 192x^4y + 432x</span>³y² - 432x²y³ + 162xy^4 - 48x^4y + 288x³y² - 648x²y³ + 648xy^4 - 243y^5
32x^5 - 192x^4y -48x^4y + 432x³y² + 288x³y² - 432x²y³ - 648x²y³ + 162xy^4 + 648xy^4 - 243y^5
32x^5 - 240x^4y + 720x³y² - 1,080x²y³ + 810xy^4 - 243y^5