Answer:
$146600
Step-by-step explanation:
Given expression: 22q+52000
q = 4300
Calculate: 22 * 4300 + 52000 = 146600
48
There are two sets of equal triangles together they each equal a square so one sets area is 36 and the others area is 12
Evaluando una ecuación exponencial, veremos que luego de 5 años el capital se convierte en $12,884.08
<h3>¿En cuánto se convierte el capital?</h3>
Esta situación se podra modelar con la ecuación exponencial:
f(n) = $8,000*(1 + 10%/100%)ⁿ
Donde n es el número de años.
Podemos simplificar la ecuación para obtener:
f(n) = $8,000*(1.1)ⁿ
Ahora queremos ver el valor que toma esto cuando n = 5, asi obtenemos:
f(n) = $8,000*(1.1)⁵ = $12,884.08
Así que luego de 5 años, el capital se convierte en $12,884.08.
Sí quieres aprender más sobre ecuaciones exponenciales:
brainly.com/question/11832081
#SPJ1
you cant do that because they are not like terms
Answers: ∠a = 30° ; ∠b = 60° ; ∠c = 105<span>°.
</span>_____________________________________________
1) The measure of Angle a is 30°. (m∠a = 30°).
Proof: All vertical angles are congruent, and we are shown in the diagram that angle A — AND the angle labeled with the measurement of 30°— are vertical angles.
2) The measure of Angle b is 60°. (m∠b = 60<span>°).
Proof: All three angles of a triangle add up to 90 degrees. In the diagram, we can examine the triangle formed by Angle A, Angle B, and a 90</span>° angle. This is a right triangle, and the angle with 90∠ degrees is indicated as such (with the "square" symbol). So we know that one angle is 90°. We also know that m∠a = 30°. If there are three angles in a triangle, and all three angles must add up to 180°, and we know the measurements of two of the three angles, we can solve for the unknown measurement of the remaining angle, which in this case is: m∠b.
90° + 30° + m∠b = 180<span>° ;
</span>180° - (<span>90° + 30°) = m∠b ;
</span>180° - (120°) = m∠b = 60<span>°
</span>___________________________
Now we need to solve for the measure of Angle c (<span>m∠c).
___________________________________________
All angles on a straight line (or straight "line segment") are called "supplementary angles" and must add up to 180</span>°. As shown, Angle c is on a "straight line". The measurement of the remaining angle represented ("supplementary angle" to Angle c is 75° (shown on diagram). As such, the measure of "Angle C" (m∠c) = m∠c = 180° - 75° = 105°.