-2.5 and 4
You can get this by factoring to the equation (2x + 5)(x - 4)
Answer: 14.6
Step-by-step explanation:
I made a square around the triangle which I then counted the squares, found the Pythagorean theorem, and then added the missing sides together
The quotient is x^3 + 4x^2 -x + 1.
Solution:
By polynomial grid division, we start by the divisor 3x + 10 placed on the column headings.
3x 10
x^3 3x^4
We know that 3x^4 must be in the top left which means that the first row entry must be x^3. So the row and column multiply to 3x^4. We use this to fill in all of the first row, multiplying x^3 by the terms of the column entries.
3x 10
x^3 3x^4 10x^3
4x^2
We now got 10x^3 though we want 22x^3. The next cubic entry must then be 12x^3 so that the overall sum is 22x^3.
3x 10
x^3 3x^4 10x^3
4x^2 12x^3
Now we have 40x^2, so the next quadratic entry must be -3x^2 so that the overall sum is 37x^2.
3x 10
x^3 3x^4 10x^3
4x^2 12x^3 40x^2
-x -3x^2 -10x
This time we have -10x, so the next linear entry must be 3x so that the overall sum is 7x.
3x 10
x^3 3x^4 10x^3
4x^2 12x^3 40x^2
-x -3x^2 -10x
1 3x 10
The bottom and final term is 10, which is our desired answer. Therefore, we can now read the quotient off the first column:
3x^4+22x^3+37x^2-7x+10 / 3x + 10 = x^3 + 4x^2 -x + 1
Answer:
P(A∪B)=17/20 or 0.85
P(A∪B')=2/5 or 0.4
P(A'∪B')=4/5 or 0.8
Step-by-step explanation:
There are four font colors so each color had equal chance and thus,
P(A)=1/4
There are 5 font sizes and so not the smallest fonts are 4.Thus,
P(B)=4/5
P(A∪B)=P(A)+P(B)-P(A∩B)
The design is generated randomly so event A and event B are independent.
P(A∩B)=P(A)*P(B)
P(A∩B)=1/4(4/5)=1/5
P(A∪B)=P(A)+P(B)-P(A∩B)
P(A∪B)=1/4+4/5-1/5=1/4+3/5
P(A∪B)=17/20 or 0.85
P(A∪B')=P(A)+P(B')-P(A∩B')
P(B')=1-P(B)=1-4/5=1/5
P(A∩B')=P(A)*P(B')=1/4*1/5=1/20
P(A∪B')=P(A)+P(B')-P(A∩B')
P(A∪B')=1/4+1/5-1/20=9/20-1/20=8/20
P(A∪B')=2/5 or 0.4
P(A'∪B')=P(A∩B)'
P(A'∪B')=1-P(A∩B)
P(A'∪B')=1-1/5=4/5
P(A'∪B')=4/5 or 0.8