Answer:
the form of it will be the same
Step-by-step explanation:
the form will need to be the same or a part will be cropped so it fits the photo/portrait
The area of the rectangle is 
Explanation:
One side of the rectangle is 
The another side of the rectangle is 
The formula to find the area of the rectangle is length × width
Area = length × width
Substituting the values, we have,

Thus, the area of the rectangle is 
64750000000000 (10 zeros in case i typed the wrong amount)
There was 16 apples in the first box and 8 apples in the second box initially.
Check the picture below.
since the diameter of the cone is 6", then its radius is half that or 3", so getting the volume of only the cone, not the top.
1)
![\bf \textit{volume of a cone}\\\\ V=\cfrac{\pi r^2 h}{3}~~ \begin{cases} r=radius\\ h=height\\[-0.5em] \hrulefill\\ r=3\\ h=4 \end{cases}\implies V=\cfrac{\pi (3)^2(4)}{3}\implies V=12\pi \implies V\approx 37.7](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20cone%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B%5Cpi%20r%5E2%20h%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%20h%3Dheight%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%5C%5C%20h%3D4%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B%5Cpi%20%283%29%5E2%284%29%7D%7B3%7D%5Cimplies%20V%3D12%5Cpi%20%5Cimplies%20V%5Capprox%2037.7)
2)
now, the top of it, as you notice in the picture, is a semicircle, whose radius is the same as the cone's, 3.
![\bf \textit{volume of a sphere}\\\\ V=\cfrac{4\pi r^3}{3}~~ \begin{cases} r=radius\\[-0.5em] \hrulefill\\ r=3 \end{cases}\implies V=\cfrac{4\pi (3)^3}{3}\implies V=36\pi \\\\\\ \stackrel{\textit{half of that for a semisphere}}{V=18\pi }\implies V\approx 56.55](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Bvolume%20of%20a%20sphere%7D%5C%5C%5C%5C%20V%3D%5Ccfrac%7B4%5Cpi%20r%5E3%7D%7B3%7D~~%20%5Cbegin%7Bcases%7D%20r%3Dradius%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20r%3D3%20%5Cend%7Bcases%7D%5Cimplies%20V%3D%5Ccfrac%7B4%5Cpi%20%283%29%5E3%7D%7B3%7D%5Cimplies%20V%3D36%5Cpi%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bhalf%20of%20that%20for%20a%20semisphere%7D%7D%7BV%3D18%5Cpi%20%7D%5Cimplies%20V%5Capprox%2056.55)
3)
well, you'll be serving the cone and top combined, 12π + 18π = 30π or about 94.25 in³.
4)
pretty much the same thing, we get the volume of the cone and its top, add them up.
