Using the normal distribution, it is found that there is a 0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
<h3>Normal Probability Distribution</h3>
The z-score of a measure X of a normally distributed variable with mean
and standard deviation
is given by:

- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
In this problem, the mean and the standard deviation are given, respectively, by:
.
The probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters is <u>one subtracted by the p-value of Z when X = 4</u>, hence:


Z = 1.71
Z = 1.71 has a p-value of 0.9564.
1 - 0.9564 = 0.0436.
0.0436 = 4.36% probability that a randomly selected caterpillar will have a length longer than (greater than) 4.0 centimeters.
More can be learned about the normal distribution at brainly.com/question/24663213
#SPJ1
Answer: 9
Step-by-step explanation:
The factors of 27 are: 1, 3, 9, 27
The factors of 36 are: 1, 2, 3, 4, 6, 9, 12, 18, 36
The factors of 54 are: 1, 2, 3, 6, 9, 18, 27, 54
Then the greatest common factor is 9.
Hope this helped ! :)
384 is between 380 and 390