Answer:
56 + 53pi
Step-by-step explanation:
<u><em>Area of small circles:</em></u>
diameter of small circle: 4cm
forumla to find area of circle: A = pir^2
r is radius = half of diameter -> d/2 = 4 / 2 = 2cm
A = pi (2cm)^2
A = pi (4cm)
A = 4pi
<u><em>Area of large circle:</em></u>
diameter of small circle: 4cm
forumla to find area of circle: A = pir^2
r is radius = half of diameter -> d/2 = 14 / 2 = 7cm
A = pi (7cm)^2
A = pi (49cm)
A = 49pi
<u><em>Area of rectangle:</em></u>
Area = width x length
Area = 14cm x 4cm
Area = 56cm
<u><em>Add all three areas:</em></u>
Area of rectangle + large circle + small circle
56cm + 49pi + 4pi = 56cm + 53pi
Answer:
- 
Step-by-step explanation:
Find slope using the slope formula : 
Plug in the given points : 
Add the numbers : 
Calculate the difference : 
Reduce the fraction : -
Solution : -
Answer:
y=-2x-12
Step-by-step explanation:
first, putt 3x-6y=2 in standard form:
subtract 3x from both sides: -6y=-3x+2
divide both sides by -6 to isolate y: y=1/2x-1/3
if the other line is perpendicular to this, you must find the slope by finding the opposite reciprocal of 1/2x: -2
now we have 2 points a slope, so we use the point-slope formula: y-y1=m(x-x1)
y+2=-2(x+5)
Use the distributive property: y+2=-2x-10
subtract 2 for both sides to isolate y: y=-2x-12
C: none of these are solutions to the given equation.
• If<em> y(x)</em> = <em>e</em>², then <em>y</em> is constant and <em>y'</em> = 0. Then <em>y'</em> - <em>y</em> = -<em>e</em>² ≠ 0.
• If <em>y(x)</em> = <em>x</em>, then <em>y'</em> = 1, but <em>y'</em> - <em>y</em> = 1 - <em>x</em> ≠ 0.
The actual solution is easy to find, since this equation is separable.
<em>y'</em> - <em>y</em> = 0
d<em>y</em>/d<em>x</em> = <em>y</em>
d<em>y</em>/<em>y</em> = d<em>x</em>
∫ d<em>y</em>/<em>y</em> = ∫ d<em>x</em>
ln|<em>y</em>| = <em>x</em> + <em>C</em>
<em>y</em> = exp(<em>x</em> + <em>C </em>)
<em>y</em> = <em>C</em> exp(<em>x</em>) = <em>C</em> <em>eˣ</em>
Answer:
8 cause ur adding 3 and 1 to get 4 then multiplying by 2 and u get 8. Hope this helps bye!