Answer:
Could you rewrite this question in english so we can understand what is being asked? Thank you!
Step-by-step explanation:
1 foot is shorter that 20 centimeters
The mass of radioactive material remaining after 50 years would be 48.79 kilograms
<h3>How to determine the amount</h3>
It is important to note that half - life is the time it takes for the amount of a substance to reduce by half its original size.
Given the radioactive decay formula as
m(t)=120e−0.018t
Where
t= 50 years
m(t) is the remaining amount
Substitute the value of t


Find the exponential value
m(t) = 48.788399
m(t) = 48.79 kilograms to 2 decimal places
Thus, the mass of radioactive material remaining after 50 years would be 48.79 kilograms
Learn more about half-life here:
brainly.com/question/26148784
#SPJ1
The Second Choice I think
Answer:
exactly one, 0's, triangular matrix, product and 1.
Step-by-step explanation:
So, let us first fill in the gap in the question below. Note that the capitalized words are the words to be filled in the gap and the ones in brackets too.
"An elementary ntimesn scaling matrix with k on the diagonal is the same as the ntimesn identity matrix with EXACTLY ONE of the (0's) replaced with some number k. This means it is TRIANGULAR MATRIX, and so its determinant is the PRODUCT of its diagonal entries. Thus, the determinant of an elementary scaling matrix with k on the diagonal is (1).
Here, one of the zeros in the identity matrix will surely be replaced by one. That is to say, the determinants = 1 × 1 × 1 => 1. Thus, it is a a triangular matrix.