The answer is Decreasing nonlinear
Because its decreasing but its not decreasing at the same rate
Answer:

Step-by-step explanation:
Recall that a <em>probability mass function</em> defined on a discrete random variable X is just a function that gives the probability that the random variable equals a certain value k
In this case we have the event
“The computer will ask for a roll to the left when a roll to the right is appropriate” with a probability of 0.003.
Then we have 2 possible events, either the computer is right or not.
Since we have 4 computers in parallel, the situation could be modeled with a binomial distribution and the probability mass function
This gives the probability that k computers are wrong at the same time.
Answer:
-7x - 6
Step-by-step explanation:
1
Distribute
(−2+5)−1(6+4)+(−7)
(−2+5)−6−4+(−7)
2
Eliminate redundant parentheses
(−2+5)−6−4+(−7)
−2+5−6−4+−7
3
Add the numbers
−2+5−6−4+−7
−2−6−6+
4
Combine like terms
−2−6−6+
Answer:
−7−6
m x H = ![\left[\begin{array}{ccc}-25&37.5&-12.5\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-25%2637.5%26-12.5%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
Step 1; Multiply 5 with this matrix
and we get a matrix ![\left[\begin{array}{ccc}-5&10\\20&40\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%2610%5C%5C20%2640%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Multiply the fraction
with the matrix
and we get ![\left[\begin{array}{ccc}-\frac{2m}{5} &\frac{4m}{5} \\\frac{8m}{5} &\frac{16m}{5} \\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Cfrac%7B2m%7D%7B5%7D%20%26%5Cfrac%7B4m%7D%7B5%7D%20%5C%5C%5Cfrac%7B8m%7D%7B5%7D%20%26%5Cfrac%7B16m%7D%7B5%7D%20%5C%5C%5Cend%7Barray%7D%5Cright%5D)
Step2; Now equate corresponding values of the matrices with each other.
-5 =
and so on. By equating we get the value of m as 
Step 3; Add the matrices to get the value of matrix m.
Adding the three matrices on the RHS we get
.
Step 4; Adding the matrices on the LHS we get the resulting matrix as H +
. Equating the matrices from step 3 and 4 we get the value of H as ![\left[\begin{array}{ccc}-2&3&-1\\\9\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-2%263%26-1%5C%5C%5C9%5Cend%7Barray%7D%5Cright%5D)
Step 5; Now to find the value of m x H we need to multiply the value of
with the matrix
Step 6; Multiplying we get the matrix m x H = [ -25
]
Answer:
3/8
Step-by-step explanation: