It’s A i did the test myself..
Radius is half the circumference
c= 2(square root) pieA
Answer:
162.24 ft
Step-by-step explanation:
So you first find the area of one side.
5.2 x 5.2 = 27.4
Then you times it by 6, because a cube has 6 sides.
27.4 x 6 = 162.24 ft
<h3>
Answer: C) incenter</h3>
========================================
Explanation:
If you were to intersect the angle bisectors (at least two of them), then you would locate the incenter. The incenter is the center of the incircle which is a circle where it is as large as possible, but does not spill over and outside the triangle. Therefore this circle fits snugly inside the triangle.
--------------
extra notes:
* The centroid is found by intersecting at least two median lines
* The circumcenter is found by intersecting at least two perpendicular bisector lines
* The orthocenter is found by intersecting at least two altitude lines
* The incenter is always inside the triangle; hence the "in" as part of the name. The centroid shares this property as well because the medians are completely contained within any triangle. The other two centers aren't always guaranteed to be inside the triangle.
* The red lines cut each angle of the triangle into two equal or congruent pieces.
The correct answer is: [B]: "4 " .
______________________________________
Explanation:
______________________________________
Refer to the table (provided within the actual question).
Note that the "inputs" ; or "x-values" ; are all listed in "chronological order" ; and are all "one (1) unit apart. and range from: "x = -3" to "x = 3" .
When "x = 0" ; the "output" ; or "f(x)" is "1/4" .
When "x = 1" ; the "output" ; or "f(x)" is: "1" .
_________________________________________________
So; the ratio of these two "outputs" is: "¼ : 1" ; or, write as:
" (¼) / 1 " ; and note that: " (¼) / 1 = (¼) ÷ 1 = ¼.
However; note that: "1/4" ; or "1:4" is NOT among the [answer choices given].
However, the ratio of the 2 (two) corresponding "outputs"; chronologically,
going from when "x = 1" ; to "x = 0" ; is: "1 : ¼" ; or; write as: "1 / (¼)" ;
And note that: "1 / (¼)" = " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" .
This corresponds to: Answer choice: [B]: "4<span>" .
</span>_________________________________________________
Let us further confirm that this answer is correct:
_________________________________________________
When x = 3; the "output" is: "16" .
When x = 2; the "output" is: "4" .
The ratio: "16/4 = ? 4 ? " ; → Yes!
_________________________________________________
When x = 2; the "output" is: "4" .
When x = 1; the "output" is: "1" .
The ratio: "4/1 = ? 4 ? " ; → Yes!
_________________________________________________
When x = 1; the "output" is: "1" .
When x = 0; the "output" is: "(¼)" .
The ratio: "1 / (¼) = ? 4 ? " ;
→ "1 / (¼)" = " 1 ÷ (¼) " = 1 * (4/1) = 1 * 4 = "4" . YES!
________________________________________________
When x = 0; the "output" is: "(¼)" .
When x = -1; the "output" is: "(¹/₁₆)" .
The ratio: "(¼) / (¹/₁₆) = ? 4 " ? ;
→ "(¼) / (¹/₁₆) = "(¼) ÷ (¹/₁₆) " = "(¼) * (¹⁶/₁) = (1*16) / (4*1) = 16/4 = "4" . Yes!
________________________________________________________
When x = -1; the "output" is: "(¹/₁₆)" .
When x = -2; the "output" is: "(¹/₆₄)" .
The ratio: "(¹/₁₆) / (¹/₆₄) = ? 4 " ? ;
→ "(¹/₁₆) / (¹/₆₄) = "(¹/₁₆) ÷ (¹/₆₄)" = "(¹/₁₆) * (⁶⁴/₁)" = (1*64) / (16*1) = 64/16 = "4" . Yes!
__________________________________________________________
When x = -2; the "output" is: "(¹/₆₄)" .
When x = -3; the "output" is: "(¹/₂₅₆)" ,
The ratio: "(¹/₆₄)/(¹/₂₅₆) = ? 4 " ? ;
→ "(¹/₆₄) / (¹/₂₅₆)" ;
= " (¹/₆₄) ÷ (¹/₂₅₆)" = " (¹/₆₄) * (²⁵⁶/₁) " = (1*256) / (64*1) = 256/164 = "4 " . Yes!
__________________________________________________________
→ So; as calculated; the ratio is: "4" ; which is:
__________________________________________________________
→ Answer choice: [B]: "4" .
__________________________________________________________