Answer:
a) Under damped
Explanation:
Given that system is critically damped .And we have to find out the condition when gain is increased.
As we know that damping ratio given as follows

Where C is the damping coefficient and Cc is the critical damping coefficient.

So from above we can say that


From above relationship we can say when gain (K) is increases then system will become under damped system.
Answer:
1. They needed to develop multiple components in software programs.
2. The ability to overlap the development to be more evolutionary in nature.
3. The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
Explanation:
Software development life cycle (SDLC) can be defined as a strategic process or methodology that defines the key steps or stages for creating and implementing high quality software applications.
In SDLC, a waterfall model can be defined as a process which involves sequentially breaking the software development into linear phases. Thus, the development phase takes a downward flow like a waterfall and as such each phase must be completed before starting another without any overlap in the process.
An incremental model refers to the process in which the requirements or criteria of the software development is divided into many standalone modules until the program is completed.
Also, a spiral model can be defined as an evolutionary SDLC that is risk-driven in nature and typically comprises of both an iterative and a waterfall model. Spiral model of SDLC consist of these phases; planning, risk analysis, engineering and evaluation.
<em>What motivated software engineers to move from the waterfall model to the incremental or spiral model is actually due to the following fact;</em>
- They needed to develop multiple components in software programs.
- The ability to overlap the development to be more evolutionary in nature.
- The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
The following is a feedback mechanism for a system :
<u>The progress bar when downloading a file on iTunes</u>
<u></u>
Explanation:
- A feedback mechanism is a loop system wherein the system responds to a perturbation. The response may be in the same direction (as in positive feedback) or in the opposite direction (as in negative feedback).
- Feedback occurs when outputs of a system are routed back as inputs as part of a chain of cause-and-effect that forms a circuit or loop. The system can then be said to feed back into itself.
- Evaluation feedback needs to be done “in the moment” to help the person receiving the feedback know where they stand.
- A feedback control system consists of five basic components: (1) input, (2) process being controlled, (3) output, (4) sensing elements, and (5) controller and actuating devices.
- Because negative feedback produces stable circuit responses, improves stability and increases the operating bandwidth of a given system, the majority of all control and feedback systems is degenerative reducing the effects of the gain.
Answer:
363 pounds 32 degrees
Explanation:
Express your answers numerically in pounds and degrees to three significant figures separated by a comma. slader
Answer:
u/v = S (y²w) / m sinwt + y/h
Explanation:
see attached image