Answer:
The molecular weight will be "28.12 g/mol".
Explanation:
The given values are:
Pressure,
P = 10 atm
= 
=
Temperature,
T = 298 K
Mass,
m = 11.5 Kg
Volume,
V = 1000 r
= 
R = 8.3145 J/mol K
Now,
By using the ideal gas law, we get
⇒ 
o,
⇒ 
By substituting the values, we get


As we know,
⇒ 
or,
⇒


Answer and Explanation:
The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.
In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.
Answer: ε₁+ε₂+ε₃ = 0
Explanation: Considering the initial and final volume to be constant which gives rise to the relation:-
l₀l₀l₀=l₁l₂l₃

taking natural log on both sides

Considering the logarithmic Laws of division and multiplication :
ln(AB) = ln(A)+ln(B)
ln(A/B) = ln(A)-ln(B)

Use the image attached to see the definition of true strain defined as
ln(l1/1o)= ε₁
which then proves that ε₁+ε₂+ε₃ = 0
Answer:
(a) The Final Temperature is 315.25 K.
(b) The amount of mass that has entered 0.5742 Kg.
(c) The work done is 56.52 kJ.
(d) The entrophy generation is 0.0398 kJ/kgK.
Explanation:
Explanation is in the following attachments.