Answer:
The binary search tree BST that is created is shown in the figure in the attached file
The missing part of the question is to draw the balanced binary search tree containing the same numbers given in the question.
Answer:
Typically, diesel trucks cost more than those with gas engines, especially when you're first buying them, as diesel is usually featured as an add-on for gas-powered cars. Diesel add-ons can cost over $5,000 for midsize trucks and around $10,000 for heavy-duty trucks.
Explanation:
Make me brain pls
Answer:
B.
Explanation:
For a given set of input values, A NAND gate produces exactly the same values as an OR gate with inverted inputs.
The truth table for a NAND gate with 2 inputs is as follows:
0 0 1
0 1 1
1 0 1
1 1 0
The truth table for an OR gate, is as follows:
0 0 0
0 1 1
1 0 1
1 1 1
If we add two extra columns for inverted inputs, the truth table will be this one:
0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 0
which is the same as for the NAND gate, not the opposite, so the statement is false.
This means that the right choice is B.
Answer:
a) 53 MPa, 14.87 degree
b) 60.5 MPa
Average shear = -7.5 MPa
Explanation:
Given
A = 45
B = -60
C = 30
a) stress P1 = (A+B)/2 + Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 + Sqrt ({(45-(-60))/2}^2 + 30)
P1 = 53 MPa
Likewise P2 = (A+B)/2 - Sqrt ({(A-B)/2}^2 + C)
Substituting the given values, we get -
P1 = (45-60)/2 - Sqrt ({(45-(-60))/2}^2 + 30)
P1 = -68 MPa
Tan 2a = C/{(A-B)/2}
Tan 2a = 30/(45+60)/2
a = 14.87 degree
Principal stress
p1 = (45+60)/2 + (45-60)/2 cos 2a + 30 sin2a = 53 MPa
b) Shear stress in plane
Sqrt ({(45-(-60))/2}^2 + 30) = 60.5 MPa
Average = (45-(-60))/2 = -7.5 MPa
Answer:
The answer is below
Explanation:
1) The synchronous speed of an induction motor is the speed of the magnetic field of the stator. It is given by:

2) The speed of the rotor is the motor speed. The slip is given by:

3) The frequency of the rotor is given as:

4) At standstill, the speed of the motor is 0, therefore the slip is 1.
The frequency of the rotor is given as:
