1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jolli1 [7]
3 years ago
8

(x/x+3)-(8/x+2)=(-13x-6)/(x^2+5x+6)​

Mathematics
1 answer:
Fed [463]3 years ago
3 0

Answer:

x = -9

x = 2

Step-by-step explanation:

Given:

\dfrac{x}{x+3}-\dfrac{8}{x+2}=\dfrac{-13x-6}{x^2+5x+6}

First, note that

x^2+5x+6=x^2+2x+3x+6=x(x+2)+3(x+2)=(x+2)(x+3)

Since x+2 and x+3 stay in the denominator, then

x\neq -2\ \text{and}\ x\neq -3

Now add two fractions which stay in the left part. The common denominator is (x+2)(x+3), so multiply the numerator of the first fraction by (x+2) and the numerator of the second fraction by (x+3) and subtract them in the numerator:

\dfrac{x}{x+3}-\dfrac{8}{x+2}=\dfrac{-13x-6}{(x+2)(x+3)}\\ \\\dfrac{x(x+2)-8(x+3)}{(x+2)(x+3)}=\dfrac{-13x-6}{(x+2)(x+3)}\\ \\x(x+2)-8(x+3)=-13x-6\\ \\x^2+2x-8x-24=-13x-6\\ \\x^2+2x-8x+13x-24+6=0\\ \\x^2+7x-18=0\\ \\x^2+9x-2x-18=0\\ \\x(x+9)-2(x+9)=0\\ \\(x+9)(x-2)=0\\ \\x+9=0\ \text{or}\ x-2=0\\ \\x=-9\ \text{or}\ x=2

You might be interested in
What is -2x-x+8? please help me !
nasty-shy [4]
<h2>Answer:</h2><h2></h2><h2>-3x + 8</h2><h2></h2><h2>Step-by-step explanation:</h2><h2></h2><h2>Add -2x and -x</h2><h2></h2><h2>= -3x</h2><h2></h2><h2>Now we are left with</h2><h2></h2><h2>-3x + 8</h2><h2></h2><h2>This is as far as we can go.</h2><h2></h2><h2>Hope this helps, have a great, and stay safe!!!</h2><h2></h2><h2>:)</h2>
4 0
4 years ago
Hi, how do we do this question?​
Nutka1998 [239]

Answer:

\displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

General Formulas and Concepts:

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring

<u>Algebra II</u>

  • Polynomial Long Division

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:                                                         \displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]  

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • Integration Constant C
  • Indefinite Integrals

Integration Rule [Reverse Power Rule]:                                                               \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:                                                       \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Logarithmic Integration

U-Substitution

Step-by-step explanation:

*Note:

You could use u-solve instead of rewriting the integrand to integrate this integral.

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int {\frac{2x}{3x + 1}} \, dx

<u>Step 2: Integrate Pt. 1</u>

  1. [Integrand] Rewrite [Polynomial Long Division (See Attachment)]:           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\bigg( \frac{2}{3} - \frac{2}{3(3x + 1)} \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \int {\frac{2}{3}} \, dx - \int {\frac{2}{3(3x + 1)}} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}\int {} \, dx - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx
  4. [1st Integral] Reverse Power Rule:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{3}\int {\frac{1}{3x + 1}} \, dx

<u>Step 3: Integrate Pt. 2</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 3x + 1
  2. [<em>u</em>] Differentiate [Basic Power Rule]:                                                             \displaystyle du = 3 \ dx

<u>Step 4: Integrate Pt. 3</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{3}{3x + 1}} \, dx
  2. [Integral] U-Substitution:                                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}\int {\frac{1}{u}} \, du
  3. [Integral] Logarithmic Integration:                                                               \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|u| + C
  4. Back-Substitute:                                                                                            \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{2}{3}x - \frac{2}{9}ln|3x + 1| + C
  5. Factor:                                                                                                           \displaystyle \int {\frac{2x}{3x + 1}} \, dx = -2 \bigg( \frac{1}{9}ln|3x + 1| - \frac{x}{3}  \bigg) + C
  6. Rewrite:                                                                                                         \displaystyle \int {\frac{2x}{3x + 1}} \, dx = \frac{-2(ln|3x + 1| - 3x)}{9} + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

8 0
3 years ago
ماThe circumference of a circle is 7pie m.<br> What is the area of the circle?
Tresset [83]

Answer:

12.25\pi sq m

Step-by-step explanation:

if circumference is 7\pi then the diameter is 7

Area = \pir²

A = (3.5)²\pi

A = 12.25\pi

7 0
2 years ago
Z varies jointly with x, and y, and z=7 when x= 2, y= 2<br> pleasee I need an answer now!!
Elina [12.6K]

Answer:

(7/4)(2)(2)=7

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
A translation moves point V(–2, 3) to V prime (negative 2, 7). Which are true statements about the translation? The point moves
Travka [436]

Answer:

The transformation rule is (x, y) → (x + 0, y + 4).

There occurs a transformation of vertical translation.

Step-by-step explanation:

A translation moves point V(–2,3) to V'(-2,7).

We have to choose the true statement about the translation from the given options.

The transformation rule is (x, y) → (x + 0, y + 4).

There occurs a transformation of vertical translation. (Answer)

{Since the x-value does not change and the y-value changes by 4 unit to the upward direction}

5 0
3 years ago
Read 2 more answers
Other questions:
  • The school yard has an area of 3,588 ft squared. The section that is in the shape of a triangle is used for picnic tables. What
    6·1 answer
  • -6(10)=10(-6) is what identity
    11·1 answer
  • A rectangle has a length of 12 meters and a width of 400 centimeters. What is the perimeter,in cm, of the rectangle? *
    15·1 answer
  • Choose the single logarithmic expression
    13·1 answer
  • Helpppp!!! Write an equation of the line through (2, 3) and (-1, -12) in slope intercept form y=mx+b? Show work
    7·1 answer
  • Sadie is 3 years older than Kareem, and Kareem is twice as old as Nadra. The sum of their ages is 33.
    7·2 answers
  • Which one is true ?
    6·1 answer
  • NEED HELP QUICKLY! WILL OFFER BRAINIEST!!
    6·2 answers
  • A small cube has the volume shown. Its side length is 1.5 in less than a second larger cube. What is
    14·1 answer
  • Standard form. (x+8)(x−6)
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!