1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Advocard [28]
3 years ago
12

Lim 1 - cos 40x>01 - cos 60​

Mathematics
1 answer:
Nuetrik [128]3 years ago
8 0

Answer:

The answer is 4/9 if the problem is:

\lim_{\theta \rightarrow 0}\frac{1-\cos(4\theta)}{1-\cos(6\theta)}.

Step-by-step explanation:

I think this says:

\lim_{\theta \rightarrow 0}\frac{1-\cos(4\theta)}{1-\cos(6\theta)}.

Please correct me if I'm wrong about the problem.

Here are some useful limits we might use:

\lim_{u \rightarrow 0}\frac{\sin(u)}{u}=1

\limg_{u \rightarrow 0}\frac{\cos(u)-1}{u}=0

So for our limit... I'm going to multiply top and bottom by the conjugate of the bottom; that is I'm going to multiply top and bottom by 1+\cos(6\theta):

\lim_{\theta \rightarrow 0}\frac{1-\cos(4\theta)}{1-\cos(6\theta)}\cdot\frac{1+\cos(6\theta)}{1+\cos(6\theta)}

When you multiply conjugates you only have to do first and last of FOIL:

\lim_{\theta \rightarrow 0}\frac{(1-\cos(4\theta))(1+\cos(6\theta))}{1-\cos^2(6\theta)}

By the Pythagorean Identities, the denominator is equal to \sin^2(6\theta):

\lim_{\theta \rightarrow 0}\frac{(1-\cos(4\theta))(1+\cos(6\theta))}{\sin^2(6\theta)}

I'm going to divide top and bottom by 36\theta^2 in hopes to use the useful limits I mentioned:

\lim_{\theta \rightarrow 0}\frac{\frac{(1-\cos(4\theta))(1+\cos(6\theta))}{36\theta^2}}{\frac{\sin^2(6\theta)}{36\theta^2}}

Let's tweak our useful limits I mentioned so it is more clear what I'm going to do in the following steps:

\lim_{\theta \rightarrow 0}\frac{\sin(6\theta)}{6\theta}=1

\lim_{\theta \rightarrow 0}\frac{\cos(4\theta)-1}{4\theta}=0

The bottom goes to 1.  The limit will go to whatever the top equals if the top limit exists.  

So let's look at the top in hopes it goes to a number:

\lim_{\theta \rightarrow 0}\frac{1-\cos(4\theta)}{36\theta^2} \cdot (1+\cos(6\theta)}

We are going to multiple the first factor by the conjugate of the top; that is we are multiply top and bottom by 1+\cos(4\theta):

\lim_{\theta \rightarrow 0}\frac{1-\cos(4\theta)}{36\theta^2} \cdot \frac{1+\cos(4\theta)}{1+\cos(4\theta)} \cdot (1+\cos(6\theta)}

Recall the thing I said about multiplying conjugates:

\lim_{\theta \rightarrow 0}\frac{1-\cos^2(4\theta)}{36\theta^2} \cdot \frac{1+\cos(6\theta)}{1+\cos(4\theta)}

We are going to apply the Pythagorean Identities here:

\lim_{\theta \rightarrow 0}\frac{\sin^2(4\theta)}{36\theta^2} \cdot \frac{1+\cos(6\theta)}{1+\cos(4\theta)}

\lim_{\theta \rightarrow 0}\frac{\sin^2(4\theta)}{\frac{9}{4}(4\theta)^2} \cdot \frac{1+\cos(6\theta)}{1+\cos(4\theta)}

\lim_{\theta \rightarrow 0}\frac{4}{9}\frac{\sin^2(4\theta)}{(4\theta)^2} \cdot \frac{1+\cos(6\theta)}{1+\cos(4\theta)}

Ok this looks good, we are going to apply the useful limits I mentioned along with substitution to find the remaining limits:

\frac{4}{9}(1)^2 \frac{1+\cos(6(0))}{1+\cos(4(0))}

\frac{4}{9}(1)\frac{1+1}{1+1}

\frac{4}{9}(1)\frac{2}{2}

\frac{4}{9}(1)

\frac{4}{9}

The limit is 4/9.

You might be interested in
Please sum 1 help mee​
GarryVolchara [31]

Answer:

Step-by-step explanation:

the green cylinder is 20\pi

while the purple cone is 18\pi

which do you think is more ?  :)

4 0
3 years ago
Read 2 more answers
5 more than a number y is -2
Nata [24]

Answer:

y + 5 = -2

Step-by-step explanation:

That would be y + 5 = -2

8 0
3 years ago
Describe how to obtain the graph of g(x) =(x-8)^2=-7 from the parent function fx=x^2
Sladkaya [172]
\bf \qquad \qquad \qquad \qquad \textit{function transformations}
\\ \quad \\\\


% left side templates
\begin{array}{llll}


f(x)=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
y=&{{  A}}({{  B}}x+{{  C}})+{{  D}}
\\ \quad \\
f(x)=&{{  A}}\sqrt{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}}(\mathbb{R})^{{{  B}}x+{{  C}}}+{{  D}}
\\ \quad \\
f(x)=&{{  A}} sin\left({{ B }}x+{{  C}}  \right)+{{  D}}
\end{array}

\bf \bullet \textit{ stretches or shrinks horizontally by  } {{  A}}\cdot {{  B}}\\\\
\bullet \textit{ flips it upside-down if }{{  A}}\textit{ is negative}
\\\\
\bullet \textit{ horizontal shift by }\frac{{{  C}}}{{{  B}}}\\
\left. \qquad  \right. if\ \frac{{{  C}}}{{{  B}}}\textit{ is negative, to the right}\\\\
\left. \qquad  \right.  if\ \frac{{{  C}}}{{{  B}}}\textit{ is positive, to the left}

\bf \bullet \textit{ vertical shift by }{{  D}}\\
\left. \qquad  \right. if\ {{  D}}\textit{ is negative, downwards}\\\\
\left. \qquad  \right. if\ {{  D}}\textit{ is positive, upwards}\\\\
\bullet \textit{ period of }\frac{2\pi }{{{  B}}}

now, with that template in mind, let's see    \bf \begin{array}{lllccll}
g(x)=&1(&1x&-8)^2&-7\\
&\uparrow &\uparrow &\uparrow &\uparrow \\
&A&B&C&D
\end{array}
5 0
4 years ago
<img src="https://tex.z-dn.net/?f=log%28x%2B3%29%20%3D%20log%208%20-%20log%202" id="TexFormula1" title="log(x+3) = log 8 - log 2
choli [55]

Answer:

Step-by-step explanation:

log (x+3)=log8-log2

log(x+3)=log(8/2)=log4

x+3=4

x=4-3=1

7 0
3 years ago
What is the equation of the line with a y-intercept of −10 and a slope of 3
Anika [276]

Step-by-step explanation:

we have y intercept -10

and slope 3

we know the equation of line in slope -intercept form

y=mx+b

where m is slope and b is y-intercept

so the final equation would be

y=3x-10

5 0
4 years ago
Other questions:
  • Find the slope of the line that passes through these two points (-3,4); (2,-1)
    14·1 answer
  • HELP ASAP WILL GIVE BRAINLIESETThe area of the base of a prism is 60 mm2. The perimeter of the base is 40 mm. The height of the
    6·1 answer
  • Find the complement of an angle that measures 3 degrees
    5·1 answer
  • The aquarium has 30 times as many fish in one tank as Jacob has. The aquarium has 90 fish. How many fish does Jacob have?
    11·2 answers
  • Write an inequality and solve the problem the sum of a number and 19 is at least 8.2.
    15·1 answer
  • For 40points. Find the volume?
    9·1 answer
  • HELP PLEASE!!!
    13·2 answers
  • Given LINELR, solve for X.<br> ,<br> η<br> ΟΟΟΟ
    11·1 answer
  • Help find x values and y values
    14·1 answer
  • Math please help give u brainlist
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!