For this equation, let b equal the cost per box.
b=$100/5
<h3><u>Answer</u> :</h3>
![\bigstar\:\boxed{\bf{\purple{x^{\frac{m}{n}}}=\orange{(\sqrt[n]{x})^m}}}](https://tex.z-dn.net/?f=%5Cbigstar%5C%3A%5Cboxed%7B%5Cbf%7B%5Cpurple%7Bx%5E%7B%5Cfrac%7Bm%7D%7Bn%7D%7D%7D%3D%5Corange%7B%28%5Csqrt%5Bn%5D%7Bx%7D%29%5Em%7D%7D%7D)
Let's solve !

![:\implies\sf\:(\sqrt[2]{25})^3](https://tex.z-dn.net/?f=%3A%5Cimplies%5Csf%5C%3A%28%5Csqrt%5B2%5D%7B25%7D%29%5E3)


<u>Hence, Oprion-D is correct</u> !
The answer would be C.(-2,-3); Minimum.
You can tell be cause the points are going down<span />
Given:
The table of values is
Number of Students : 7 14 21 28
Number of Textbooks : 35 70 105 140
To find:
The rate of change and showing that the ratios of the two quantities are proportional and equivalent to the unit rate.
Solution:
The ratio of number of textbooks to number of students are




All the ratios of the two quantities are proportional and equivalent to the unit rate.
Let y be the number of textbooks and x be the number of students, then

Here, k=5.


Hence the rate of change is constant that is 5.
Answer:
I cant see the photo
Step-by-step explanation: