1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis23 [38]
3 years ago
12

I'm having a hard time with this. A new housing development extends 4 miles in one direction, makes a right turn, and then con-

tinues for 3 miles. A new road runs between the beginning and ending points of the development. What is the perimeter of the triangle formed by the homes and the road? What is the area of the housing development?
Mathematics
1 answer:
Mademuasel [1]3 years ago
8 0

Answer:

perimeter = 12 miles

area = 6 square miles

Step-by-step explanation:

Since it makes a right triangle, use the Pythagorean Formula.

3^2+4^2=c^2

9+16=c^2

25=c^2

5=c, so the hypotenuse of the right triangle is 5.

Perimeter = 3+4+5 = 12 miles

area = 1/2bh (1/2 base times height)

=1/2x3x4

=6

Area = 6 square miles

You might be interested in
500 milliliters of juice was shared equally by 4 children. How many milliliters of juice did each child get and how much juse wa
Natali5045456 [20]
Divide 500 by 4

500/4 = 125

This divides with no remainder.

Thus, each child gets 125 millimeters of juice and there was no juice left over.

Have an awesome day! :)
5 0
4 years ago
Consider the following. C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)
horsena [70]

Answer:

a.

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b.

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

Step-by-step explanation:

Given that:

C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1), starting at (0, 0)

a. Find a piecewise smooth parametrization of the path C.

r(t) = { 0

If C: counterclockwise around the triangle with vertices (0, 0), (1, 0), and (0, 1),

Then:

C_1 = (0,0) \\ \\  C_2 = (1,0) \\ \\ C_3 = (0,1)

Also:

\mathtt{r_1 = (0,0) + t(1,0) = (t,0) }

\mathbf{r_1 = (t,0)  \implies  t = 0 \ to \ 1}

\mathtt{r_2 = (1,0) + t(-1,1) = (1- t,t) }

\mathbf{r_2 = (2-t,t-1)  \implies  t = 1 \ to \ 2}

\mathtt{r_3 = (0,1) + t(0,-1) = (0,1-t) }

\mathbf{r_3 = (0,3-t)  \implies  t = 2 \ to \ 3}

b Evaluate :

Integral of (x+2y^1/2)ds

\mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \int  \limits ^1_{0} \ (t + 0)  \sqrt{1} } \\ \\ \mathtt{  \int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \begin {pmatrix} \dfrac{t^2}{2} \end {pmatrix} }^1_0 \\ \\  \mathtt{\int  \limits ^1_{c1} (x+ 2 \sqrt{y}) ds = \dfrac{1}{2}}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits (x+2 \sqrt{y} \sqrt{(\dfrac{dx}{dt})^2 + (\dfrac{dy}{dt})^2 \ dt } }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds = \int  \limits 2- t + 2\sqrt{t-1}  \ \sqrt{1+1}  }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2} \int  \limits^2_1  2- t + 2\sqrt{t-1} \ dt }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2t - \dfrac{t^2}{2}+ \dfrac{2(t-1)^{3/2}}{3} (2)  \end {pmatrix} ^2_1}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{1}{2} (4-1)+\dfrac{4}{3} (1)^{3/2} -0 \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} 2 -\dfrac{3}{2} + \dfrac{4}{3} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{12-9+8}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =  \sqrt{2}  }  \ \begin {pmatrix} \dfrac{11}{6} \end {pmatrix} }

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ \sqrt{2}  }{6} \  (11 )}

\mathtt{\int  \limits _{c2} (x+ 2 \sqrt{y}) ds =   \dfrac{ 11 \sqrt{2}  }{6}}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 0+2 \sqrt{3-t}   \ \sqrt{0+1} }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits ^3_2 2 \sqrt{3-t}   \ dt}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds =  \int  \limits^3_2 \begin {pmatrix}  \dfrac{-2(3-t)^{3/2}}{3} (2) \end {pmatrix}^3_2 }

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [(0)-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = -\dfrac{4}{3} [-(1)]}

\mathtt{\int  \limits _{c3} (x+ 2 \sqrt{y}) ds = \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}}{6}+\dfrac{1}{2}+ \dfrac{4}{3}}

\mathtt{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+3+8}{6}}

\mathbf{\int  \limits _{c} F \ dr =\dfrac{11 \sqrt{2}+11}{6}}

5 0
3 years ago
A number k is multiplied by 3/4. the product is 12. What is the value of k?
elena55 [62]

Answer:

3/4 × 12/1

3×12/4×1

36/4

9

4 0
3 years ago
Read 2 more answers
What expression is equivalent to ^3 square root of 2y^3 times 7 square root of 18y
Mumz [18]

Answer:

\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})

Step-by-step explanation:

The question is poorly formatted.

Given

\sqrt[3]{2y^3} * 7\sqrt{18y}

Required

Derive an equivalent expression

\sqrt[3]{2y^3} * 7\sqrt{18y}

Express 18 as 9 * 2

\sqrt[3]{2y^3} * 7\sqrt{9 * 2y}

Split the expression as follows:

\sqrt[3]{2y^3} * 7\sqrt{9} * \sqrt{2y}

Take positive square root of 9

\sqrt[3]{2y^3} * 7*3 * \sqrt{2y}

\sqrt[3]{2y^3} * 21 * \sqrt{2y}

21*\sqrt[3]{2y^3} *  \sqrt{2y}

The cube root can be rewritten to give:

21*\sqrt[3]{2}*\sqrt[3]{y^3} *  \sqrt{2y}

\sqrt[3]{y^3} = y^{3*\frac{1}{3}} = y

So, we have:

21*\sqrt[3]{2} * y *  \sqrt{2y}

Rewrite as:

21y *\sqrt[3]{2}  *  \sqrt{2y}

Split \sqrt{2y

21y *\sqrt[3]{2}  *  \sqrt{2} * \sqrt{y}

Collect Like Terms

21y*\sqrt{y} *\sqrt[3]{2}  *  \sqrt{2}

Represent in index form

21y*y^{\frac{1}{2}} *2^\frac{1}{3} *2^\frac{1}{2}

Apply law of indices

21*y^{1+\frac{1}{2}} *2^{\frac{1}{3} +\frac{1}{2} }

21*y^{\frac{2+1}{2}} *2^{\frac{2+3}{6}}

21*y^{\frac{3}{2}} *2^{\frac{5}{6}}

21(y^{\frac{3}{2}})(2^{\frac{5}{6}})

Hence:

\sqrt[3]{2y^3} * 7\sqrt{18y} = 21(y^{\frac{3}{2}})(2^{\frac{5}{6}})

6 0
3 years ago
Please help me I just need the ticket price.
slava [35]
$167.... That an expensive tickets
4 0
3 years ago
Other questions:
  • What is the value of x in this equation? 6x -35= -5x+9. Please show work. Thanks!
    14·1 answer
  • Z^4= -625 find the solution
    15·1 answer
  • Decide whether the data in the table represents a linear function or an exponential function. Explain how you know.
    13·1 answer
  • Simplify completely 10x6y3+20x3y2/5x3y​
    10·1 answer
  • Figure not drawn to scale.
    9·1 answer
  • Carmen lives in Maine and pays 5% in sales tax. She just bought $70 in
    10·2 answers
  • Which is the simplified form of the expression<br> 3<br> 2<br> 21 12<br> x y12<br> 24
    8·1 answer
  • Choose an equation of a line through the point (-4, 1) perpendicular to y=−12x+3.
    14·1 answer
  • Roland pays $500 a month in rent. Which expression represents the amount Roland pays for rent in 1
    5·1 answer
  • Identify the end behavior brain list for whoever gets it right
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!