Answer:
(-6, -4).
Step-by-step explanation:
When you reflect coordinates over the y-axis, the x-coordinates remain the same, but the y-coordinates become their additive inverse.
The original coordinates for F are (6, -4).
The new coordinates for F would be F' (-6, -4).
25m+100−24m−75=68
Step 1: Simplify both sides of the equation.
25m+100−24m−75=68
25m+100+−24m+−75=68
(25m+−24m)+(100+−75)=68(Combine Like Terms)
m+25=68
m+25=68
Step 2: Subtract 25 from both sides.
m+25−25=68−25
m=43
Answer:
m=43
Answer:
x=57 degree
Step-by-step explanation:
let's do so using substitution
![\bf \begin{cases} -3x-4y=-14\\ 9x+2y=22 \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{solving for "y" in the 1st equation}~\hfill }{-3x-4y=-14\implies -3x+14-4y=0} \\\\\\ -3x+14=4y\implies \cfrac{14-3x}{4}=\boxed{y} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{substituting "y" in the 2nd equation}}{9x+2\left( \boxed{\cfrac{14-3x}{4}} \right)=22}\implies 9x+\cfrac{14-3x}{2}=22](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Bcases%7D%20-3x-4y%3D-14%5C%5C%209x%2B2y%3D22%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsolving%20for%20%22y%22%20in%20the%201st%20equation%7D~%5Chfill%20%7D%7B-3x-4y%3D-14%5Cimplies%20-3x%2B14-4y%3D0%7D%20%5C%5C%5C%5C%5C%5C%20-3x%2B14%3D4y%5Cimplies%20%5Ccfrac%7B14-3x%7D%7B4%7D%3D%5Cboxed%7By%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsubstituting%20%22y%22%20in%20the%202nd%20equation%7D%7D%7B9x%2B2%5Cleft%28%20%5Cboxed%7B%5Ccfrac%7B14-3x%7D%7B4%7D%7D%20%5Cright%29%3D22%7D%5Cimplies%209x%2B%5Ccfrac%7B14-3x%7D%7B2%7D%3D22)
![\bf \stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2\left( 9x+\cfrac{14-3x}{2}\right)=2(22)}\implies 18x+(14-3x)=44\implies 15x+14=44 \\\\\\ 15x = 30\implies x = \cfrac{30}{15}\implies \blacktriangleright x = 2\blacktriangleleft \\\\\\ \stackrel{\textit{since we know that }}{\cfrac{14-3x}{4}=y}\implies \cfrac{14-3(2)}{4}=y\implies \cfrac{14-6}{4}=y\implies \blacktriangleright 2 = y \blacktriangleleft \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (2,2)~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B2%7D%7D%7B2%5Cleft%28%209x%2B%5Ccfrac%7B14-3x%7D%7B2%7D%5Cright%29%3D2%2822%29%7D%5Cimplies%2018x%2B%2814-3x%29%3D44%5Cimplies%2015x%2B14%3D44%20%5C%5C%5C%5C%5C%5C%2015x%20%3D%2030%5Cimplies%20x%20%3D%20%5Ccfrac%7B30%7D%7B15%7D%5Cimplies%20%5Cblacktriangleright%20x%20%3D%202%5Cblacktriangleleft%20%5C%5C%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bsince%20we%20know%20that%20%7D%7D%7B%5Ccfrac%7B14-3x%7D%7B4%7D%3Dy%7D%5Cimplies%20%5Ccfrac%7B14-3%282%29%7D%7B4%7D%3Dy%5Cimplies%20%5Ccfrac%7B14-6%7D%7B4%7D%3Dy%5Cimplies%20%5Cblacktriangleright%202%20%3D%20y%20%5Cblacktriangleleft%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%282%2C2%29~%5Chfill)
Wouldn't u just have to add +3 on both sides so
y= 1/2x + 4 ?