We have a sample of 28 data points. The sample mean is 30.0 and the sample standard deviation is 2.40. The confidence level required is 98%. Then, we calculate α by:

The confidence interval for the population mean, given the sample mean μ and the sample standard deviation σ, can be calculated as:
![CI(\mu)=\lbrack x-Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}},x+Z_{1-\frac{\alpha}{2}}\cdot\frac{\sigma}{\sqrt[]{n}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack%20x-Z_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%2Cx%2BZ_%7B1-%5Cfrac%7B%5Calpha%7D%7B2%7D%7D%5Ccdot%5Cfrac%7B%5Csigma%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D%5Crbrack)
Where n is the sample size, and Z is the z-score for 1 - α/2. Using the known values:
![CI(\mu)=\lbrack30.0-Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}},30.0+Z_{0.99}\cdot\frac{2.40}{\sqrt[]{28}}\rbrack](https://tex.z-dn.net/?f=CI%28%5Cmu%29%3D%5Clbrack30.0-Z_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%2C30.0%2BZ_%7B0.99%7D%5Ccdot%5Cfrac%7B2.40%7D%7B%5Csqrt%5B%5D%7B28%7D%7D%5Crbrack)
Where (from tables):

Finally, the interval at 98% confidence level is:
Hello,
The formula for finding the area of a circular region is:

then:

With the two radius it is formed an isosceles triangle, so, we must obtain its area, but first we obtain the height and the base.

Now we can find its area:
![A_{2}=2* \frac{b*h}{2} \\ \\ A_{2}= [r*sen(40)][r*cos(40)]\\ \\A_{2}= r^{2}*sen(40)*cos(40)](https://tex.z-dn.net/?f=A_%7B2%7D%3D2%2A%20%5Cfrac%7Bb%2Ah%7D%7B2%7D%20%20%5C%5C%20%20%5C%5C%20A_%7B2%7D%3D%20%5Br%2Asen%2840%29%5D%5Br%2Acos%2840%29%5D%5C%5C%20%20%5C%5CA_%7B2%7D%3D%20r%5E%7B2%7D%2Asen%2840%29%2Acos%2840%29)
The subtraction of the two areas is 100cm^2, then:
Answer: r= 1.59cm
Answer: 57.888
Step-by-step explanation: you have to use long multiplication to evaluate