You can buy 5 packs of batteries at the most
plse make me the brainliest
Step-by-step explanation:
Area of Park = Length * Width
Therefore Width = Area / Length
= (6/8) / (1/2) = (6/8) * (2/1) = 3/2 miles.
Quadrant 2 is the only one that can satisfy the condition. In there, x<0 and y>0
Answer:
Problem B: x = 12; m<EFG = 48
Problem C: m<G = 60; m<J = 120
Step-by-step explanation:
Problem B.
Angles EFG and IFH are vertical angles, so they are congruent.
m<EFG = m<IFH
4x = 48
x = 12
m<EFG = m<IFH = 48
Problem C.
One angle is marked a right angle, so its measure is 90 deg.
The next angle counterclockwise is marked 30 deg.
Add these two measures together, and you get 120 deg.
<J is vertical with the angle whose measure is 120 deg, so m<J = 120 deg.
Angles G and J from a linear pair, so they are supplementary, and the sum of their measures is 180 deg.
m<G = 180 - 120 = 60
Let the number of large bookcases be x and number of small bookcases be y, then
Maximise P = 80x + 50y;
subkect to:
6x + 2y ≤ 24
x, y ≥ 2
The corner points are (2, 2), (2, 6), (3.333, 2)
For (2, 2): P = 80(2) + 50(2) = 160 + 100 = 260
For (2, 6): P = 80(2) + 50(6) = 160 + 300 = 460
For (3.333, 2): P = 80(3.333) + 50(2) = 266.67 + 100 = 366.67
Therefore, for maximum profit, he should produce 2 large bookcases and 6 small bookcases.