Decimal: Divide 16 by 25: 0.64
Percent: move the decimal 2 places to the left: 64, then add a percent sign: 64%
Answer: 14x^2-93xy+60y^2 Hope that helps!
Step-by-step explanation:
1. Expand by distributing terms
(20x-12y)(x-4y)-(3x-4y)(2x+3y)
2. Use the Foil method:(a+b)(c+d)= ac+ad+bc+bd
20x^2-80xy-12yx+48y^2-(3x-4y)(2x+3y)
3. Use the Foil method : (a+b)(c+d)= ac+ad+bc+bd
20x^2-80xy-12yx+48y^2-(6x^2+9xy-8yx-12y^2)
4. Remove parentheses 20x^2-80xy-12yx+48y^2-6x^2-9xy+ 8yx+12y^2
5. Collect like terms (20x^2-6x^2)+(-80xy-12xy-9xy+8xy)+(48y^2+12y^2)
6. Simplify.
And your answer would be 14x^2-93xy+60y^2
The answer is A, B(4, 4) and D(4, -3).
Hope I helped!!!! :D
Scotts method is linear because the number of minutes increased by an equal number every week
The matrix given is
![\left[\begin{array}{ccc}-5&1\\1&4\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-5%261%5C%5C1%264%5Cend%7Barray%7D%5Cright%5D%20)
To find determinant
![\left[\begin{array}{ccc}a&b\\c&d\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20)
we do

So, the determinant of the given matrix is