Answer:
The probability that the sample mean would differ from the population mean by more than 2.6 mm is 0.0043.
Step-by-step explanation:
According to the Central Limit Theorem if we have a population with mean μ and standard deviation σ and appropriately huge random samples (n > 30) are selected from the population with replacement, then the distribution of the sample means will be approximately normally distributed.
Then, the mean of the distribution of sample mean is given by,

And the standard deviation of the distribution of sample mean is given by,

The information provided is:
<em>μ</em> = 144 mm
<em>σ</em> = 7 mm
<em>n</em> = 50.
Since <em>n</em> = 50 > 30, the Central limit theorem can be applied to approximate the sampling distribution of sample mean.

Compute the probability that the sample mean would differ from the population mean by more than 2.6 mm as follows:


*Use a <em>z</em>-table for the probability.
Thus, the probability that the sample mean would differ from the population mean by more than 2.6 mm is 0.0043.
Answer:
-7 and -5
Step-by-step explanation:
-7 and -5 added together are -12, and their product is 35.
Answer:
769.56
Step-by-step explanation:
its like doing 726 times 106 then just move the decimal. and i looked it up
Answer:
scale factor = 
Step-by-step explanation:
Consider the ratio of the x and y- coordinates, image to original, that is
scale factor =
=
= 