Answer:
the group that contains this organism is protozoa
<span>adenine (A), cytosine (C), guanine (G) and thymine (T)
I think
</span>
Answer: The female had the genotype XHXh, and produced the two gametes seen at the left side of the diagram. The male had the genotype XHY0, and produced the two gametes seen at the right side of the diagram.
Explanation:
<span>One important area of DNA research is that of genetics and medical research. Due to our discovery of DNA, our ability to actually diagnose diseases early on has been vastly improved. In addition, we have been able to better assess a person's genetic susceptibility to specific diseases. In doing so, we have also paved the pathway to formulate brand new drugs to treat these diseases. In fact, drugs can essentially be custom made to complement a person's personal biochemistry and genetic makeup. For those diseases that were previously considered lethal and where treatment was either non-existent or largely unsuccessful, the discovery of DNA has essentially led to breakthrough drugs and treatments for patients with serious illnesses.</span>
Answer:
D. If all of the offspring are short-tailed, the unknown individual is the homozygous dominant genotype.
Explanation:
The short tail phenotype is completely dominant over the long tail phenotype. When a short tailed salamander with unknown genotype is crossed with a homozygous recessive long tailed salamander, the cross is called testcross. Lets assume that the allele "S" gives "short tail" phenotype while the allele "s" gives "long tail" phenotype.
If the "short tailed salamander" with unknown genotype is homozygous dominant (SS), the process of the testcross will express only dominant trait (cross 1). On the other hand, if the "short tailed salamander" with unknown genotype is heterozygous dominant (Ss), segregation of alleles during gamete formation would form two types of gametes (cross 2). The 50% progeny would express the "long tail" phenotype while rest 50% will express the "short tail" phenotype.