9514 1404 393
Answer:
3
Step-by-step explanation:
For f(x) = x^3 -2x^2 -7x +5 and x=1/(2-√3), we have ...
f(x) = ((x -2)x -7)x +5
and ...
x = 1/(2-√3) = (2+√3)/(2^2 -3) = 2+√3
Then ...
f(2+√3) = ((2 +√3 -2)(2 +√3) -7)(2 +√3) +5
= (3+2√3 -7)(2+√3) +5
= 2(√3 -2)(√3 +2) +5 = 2(3 -4) +5 = -2 +5
f(1/(2 -√3)) = 3
_____
If you really mean x = (1/2) -√3, then f(x) = (42√3 -3)/8.
Answer:
alternate exterior means outside of the two parallel lines so your answer is 7 because alternate means other side of transversal
Part I)
The module of vector AB is given by:
lABl = root ((- 3) ^ 2 + (4) ^ 2)
lABl = root (9 + 16)
lABl = root (25)
lABl = 5
Part (ii)
The module of the EF vector is given by:
lEFl = root ((5) ^ 2 + (e) ^ 2)
We have to:
lEFl = 3lABl
Thus:
root ((5) ^ 2 + (e) ^ 2) = 3 * (5)
root ((5) ^ 2 + (e) ^ 2) = 15
Clearing e have:
(5) ^ 2 + (e) ^ 2 = 15 ^ 2
(e) ^ 2 = 15 ^ 2 - 5 ^ 2
e = root (200)
e = root (2 * 100)
e = 10 * root (2)
Answer:
interval = [17.3948 , 20.6052]
Step-by-step explanation:
given,
random sample (n) = 45
average product lifespan = 19 years
standard deviation = 4 years
confidence interval of 99 % = ?
we know,
t* = qt(1.99/2 + 44 ) = qt(0.995,44)
t* = 2.692
so,
interval




interval = [19 - 1.6052 , 19 + 1.6052]
interval = [17.3948 , 20.6052]
Answer:
x = 31/9 and y = 5/3
Step-by-step explanation:
It is given that,
3x - 2y = 7 -----(1)
3x + 4y = 17 ----(2)
<u>To find the solution by elimination method</u>
Step 1: Subtract eq(2) from eq(1)
3x - 2y = 7 -----(1)
<u> 3x + 4y = 17 </u>----(2)
0 - 6y = -10
6y = 10
y = 10/6 = 5/3
Step 2: Substitute the value of y in eq (1)
3x - 2y = 7 -----(1)
3x - 2*(5/3) = 7
3x = 7 + 10/3
3x = 31/3
x = 31/9
Therefore x = 31/9 and y = 5/3