9514 1404 393
Answer:
   3
Step-by-step explanation:
For f(x) = x^3 -2x^2 -7x +5 and x=1/(2-√3), we have ...
   f(x) = ((x -2)x -7)x +5
and ...
   x = 1/(2-√3) = (2+√3)/(2^2 -3) = 2+√3
Then ...
   f(2+√3) = ((2 +√3 -2)(2 +√3) -7)(2 +√3) +5
   = (3+2√3 -7)(2+√3) +5
   = 2(√3 -2)(√3 +2) +5 = 2(3 -4) +5 = -2 +5
   f(1/(2 -√3)) = 3
_____
If you really mean x = (1/2) -√3, then f(x) = (42√3 -3)/8.
 
        
             
        
        
        
Answer:
alternate exterior means outside of the two parallel lines so your answer is 7 because alternate means other side of transversal
 
        
             
        
        
        
Part I)
 The module of vector AB is given by:
 lABl = root ((- 3) ^ 2 + (4) ^ 2)
 lABl = root (9 + 16)
 lABl = root (25)
 lABl = 5
 Part (ii)
 The module of the EF vector is given by:
 lEFl = root ((5) ^ 2 + (e) ^ 2)
 We have to:
 lEFl = 3lABl
 Thus:
 root ((5) ^ 2 + (e) ^ 2) = 3 * (5)
 root ((5) ^ 2 + (e) ^ 2) = 15
 Clearing e have:
 (5) ^ 2 + (e) ^ 2 = 15 ^ 2
 (e) ^ 2 = 15 ^ 2 - 5 ^ 2
 e = root (200)
 e = root (2 * 100)
 e = 10 * root (2)
        
             
        
        
        
Answer:
interval = [17.3948 , 20.6052]
Step-by-step explanation:
given,
random sample (n) = 45
average product lifespan = 19 years
standard deviation = 4 years
confidence interval of 99 %  = ?
we know,
t* = qt(1.99/2 + 44 ) = qt(0.995,44)
t* = 2.692
so,
interval




interval = [19 - 1.6052 , 19 + 1.6052]
interval = [17.3948 , 20.6052]
 
        
             
        
        
        
Answer:
 x = 31/9 and y = 5/3
Step-by-step explanation:
It is given that,
3x - 2y = 7  -----(1)
3x + 4y = 17 ----(2)
<u>To find the solution by elimination method</u>
Step 1: Subtract eq(2) from eq(1)
 3x - 2y = 7  -----(1)
<u> 3x + 4y = 17 </u>----(2)
0  - 6y = -10
6y = 10
y = 10/6 = 5/3
Step 2: Substitute the value of y in eq (1)
   3x - 2y = 7  -----(1)
   3x  - 2*(5/3) = 7
   3x = 7 + 10/3
   3x = 31/3
    x = 31/9
Therefore x = 31/9 and y = 5/3