Answer:
80 tickets
Step-by-step explanation:
Given the profit, y, modeled by the equation, y = x^2 – 40x – 3,200, where x is the number of tickets sold, we are to find the total number of tickets, x, that need to be sold for the drama club to break even. To do that we will simply substitute y = 0 into the given the equation and calculate the value of x;
y = x^2 – 40x – 3,200,
0 = x^2 – 40x – 3,200,
x^2 – 40x – 3,200 = 0
x^2 – 80x + 40x – 3,200 = 0
x(x-80)+40(x-80) = 0
(x+40)(x-80) = 0
x = -40 and x = 80
x cannot be negative
Hence the total number of tickets, x, that need to be sold for the drama club to break even is 80 tickets
Question:
Expand and simplify 5(x - 1) - 3(x + 4)
Answer:
1.) Use the distributive property to solve this equation:
5(x - 1) = 5x - 5
3(x + 4) = 3x + 12
2.) Put it in the equation:
5x - 5 - 3x + 12
3.) Group them:
5x - 3x - 5 + 12
4.) Simplify:
2x - 7
which is the answer.
Hope this helped! :))
If you would like to know the Tom's pay for the week, you can calculate this using the following steps:
P = B * h
P ... the pay
B ... the base pay
h ... the number of hours worked
B = $6.35
h = 28 hours
P = B * h = $6.35 * 28 hours = $177.8
<span>Tom's pay for the week would be $177.8.</span>
<span> x^2+8x+12 = </span>(x + 6)(x + 2)